跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 12:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪瑋儷
研究生(外文):Wei-Li Hung
論文名稱:以N-甲基-D-天門冬胺酸受體功能低下小鼠模式評估肌胺酸對思覺失調症相關行為與認知缺損之療效
論文名稱(外文):The Effect of Sarcosine on the Amelioration of Schizophrenia-Related Behavioral and Cognitive Deficits in Mouse Models of NMDAR Hypofunction
指導教授:賴文崧賴文崧引用關係
口試委員:陳景宗梁庚辰劉玉麗藍先元
口試日期:2015-06-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:心理學研究所
學門:社會及行為科學學門
學類:心理學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:140
中文關鍵詞:肌胺酸N-甲基-D-天門冬胺酸受體功能低下小動物正子斷層掃描甘胺酸轉運體抑制劑思覺失調症
外文關鍵詞:SarcosineNMDA hypofunctionmicroPET scanglycine transporter inhibitorschizophrenia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
思覺失調症是一種嚴重且耗費社會成本甚鉅的心智疾患。麩胺酸神經傳導系統的N-甲基-D-天門冬胺酸受體功能低下為思覺失調症新興假說,相關的潛力藥物能緩解病人不同面向的症狀,尤其是負向及認知症狀。根據此假說,增強N-甲基-D-天門冬胺酸受體功能可達到治療效果,而治療藥物作用在受體上的甘胺酸調節位,可避免因麩胺酸結合位被過度刺激而引發神經毒性。甘胺酸又為N-甲基-D-天門冬胺酸受體的共同致效劑,N-甲基-D-天門冬胺酸受體附近的甘胺酸濃度由甘胺酸型一轉運體負責調節,並維持其在低飽和狀態。肌胺酸為一種甘胺酸型一轉運體抑制劑,可抑制甘胺酸回收,增加突觸間甘胺酸濃度,進而提升N-甲基-D-天門冬胺酸受體功能。儘管過去已有研究指出肌胺酸能反轉N-甲基-D-天門冬胺酸受體功能低下現象,但有效劑量及療效背後的機制為何仍不清楚。因此,本論文設計了三個研究,試圖探討肌胺酸劑量效果,並以兩種N-甲基-D-天門冬胺酸受體功能低下動物為模型,觀察肌胺酸對思覺失調相關行為與認知缺損的療效。在研究一我們發現,單一注射低至中等劑量(250, 200, 1000及2000 mg/kg)的肌胺酸不影響小鼠自主活動量且未產生明顯毒性反應。在研究二,我們使用一種N-甲基-D-天門冬胺酸受體拮抗劑–MK-801來引發思覺失調症相關行為缺損。實驗結果發現,單一注射肌胺酸不影響MK-801誘發的過度活動與刻板行為(除了最高劑量2000 mg/kg),然而,在1000 mg/kg的劑量下,肌胺酸能達到有效改善由MK-801引發驚跳反應、探索行為與恐懼制約行為缺損的效果。同時,我們透過正子斷層掃描腦造影技術發現,MK-801會明顯引發腦部異常活化現象,而給予肌胺酸則能有效緩解此異常。最後,在研究三,我們以先天性N-甲基-D-天門冬胺酸受體功能低下的基因缺損小鼠(絲氨酸消旋酶基因剔除鼠)為模型,給予肌胺酸治療後,發現基因剔除小鼠在認知行為方面的缺損得到改善。綜合以上,本研究顯示N-甲基-D-天門冬胺酸功能低下的小鼠模型確實能再現思覺失調相關的行為與認知缺損,而給予肌胺酸後可改善這些缺損,支持肌胺酸為有效治療思覺失調症的潛力藥物。

Schizophrenia is a severe mental disorder, which results in tremendous cost to our society. The hypofunction of the N-methyl-d-aspartate (NMDA) glutamate transmitter system is an emerging hypothesis for schizophrenia, especially for negative and cognitive symptoms. This hypothesis has suggested promising pharmacological agents to ameliorate full range of schizophrenia symptoms. Based upon this hypothesis, therapeutic agents need to enhance the activity of NMDA receptor (NMDAR) via glycine modulation site for avoiding toxicity induced by overstimulation of glutamate binding sites. Glycine, a co-agonist at the NMDAR complex, is maintained at a low sub-saturating level in the vicinity of NMDAR by glycine transporter 1 (GlyT-1). To increase glycine level, sarcosine (N-methylglycine), a GlyT-1 inhibitor, can increase glycine concentration within synaptic cleft to facilitate NMDAR function. Despite emerging evidence on sarcosine in restoring NMDA hypofunction, the effective dosage and the mechanism for its therapeutic effect remain much unclear. In this thesis, three studies were designed and conducted to investigate the dosage and effect of sarcosine on the amelioration of behavioral and cognitive deficits in two mouse models of NMDAR hypofunction. In Study 1, we found that a single injection of sarcosine at low to medium doses (i.e., 250, 500 and 1000 mg/kg, i.p.) did not affect spontaneous locomotor activity in mice and no obvious toxicity was found in these mice as well. In Study 2, MK-801, a NMDAR antagonist, was used to induce schizophrenia-like behavior in male mice. A single administration of sarcosine (except the highest dose, 2000 mg/kg) had no effect on MK-801 induced hyperlocomotion and stereotypy. Intriguingly, a single injection of sarcosine at 1000 mg/kg can alleviate MK-801 induced cognitive deficits in the prepulse inhibition, holeboard task and fear conditioning task. In complementary to behavioral improvement, taking advantage of microPET scan with 18F-fluorodeoxyglucose to visualize brain activity, we also found that sarcosine can ameliorate the alteration of brain activity induced by MK-801 in male mice. In Study 3, serine racemase-null mutant (SR-/-) mice were further used as a genetic NMDAR hypofunction mouse model of schizophrenia. A single injection of sarcosine also successfully rescued observed behavioral and cognitive deficits reported in these male SR-/- mice. Collectively, our mouse models of NMDAR hypofunction that recapture some schizophrenia-like behavioral and cognitive deficits in mice can be ameliorated by a single injection of sarcosine. Findings from this research support the therapeutic effect of sarcosine and its potential in the treatment of schizophrenia.

Chapter 1. Introduction 1
1.1 The Overview of Schizophrenia 1
1.2 NMDAR Hypofunction and Schizophrenia 7
1.3 The Glycine Modulatory Site as a New Drug Target for Schizophrenia 14
1.4 Why Modeling Schizophrenia in Animal Models 21
1.5 The Objectives of This Thesis 27
Chapter 2. Materials and methods 29
2.1 General materials and methods 29
2.2 Study 1. To evaluate the dosage effect of sarcosine 31
2.3 Study 2. To examine the effects of sarcosine treatment on MK-801 animal model 33
2.4 Study 3. To examine the effects of sarcosine treatment on serine racemase knockout (SRKO) mice 42
2.5 Statistics and data analyses 44
Chapter 3. Results 45
3.1 Study 1. The dosage effect of sarcosine 45
3.2 Study 2. The effects of sarcosine treatment on MK-801 animal model 47
3.3 Study 3. Acute sarcosine treatment reverses cognitive deficits in SR-/- mice 51
Chapter 4. Discussion 53
4.1 Summary of results 53
4.2 Therapeutic effects of sarcosine on the amelioration of cognitive deficits caused from NMDAR hypofunction 54
4.3 The comparisons of treatments targeting at GMS of NMDARs 62
4.4 Inhibition of GlyTs regulates hippocampal-dependent learning and memory 69
4.5 GlyTs as modulators in the mesolimbic dopamine reward pathway 71
4.6 Limitations of this study 72
4.7 Contribution and possible application 73
References 99


Abi-Dargham, A., Mawlawi, O., Lombardo, I., Gil, R., Martinez, D., Huang, Y., … Laruelle, M. (2002). Prefrontal dopamine D1 receptors and working memory in schizophrenia. The Journal of Neuroscience, 22(9), 3708–3719.
Achat-Mendes, C., Nic Dhonnchadha, B. A., Platt, D. M., Kantak, K. M., & Spealman, R. D. (2012). Glycine Transporter-1 Inhibition Preceding Extinction Training Inhibits Reacquisition of Cocaine Seeking. Neuropsychopharmacology, 37(13), 2837–2845. doi:10.1038/npp.2012.155
Alberati, D., Moreau, J. L., Lengyel, J., Hauser, N., Mory, R., Borroni, E., … Wettstein, J. G. (2012). Glycine reuptake inhibitor RG1678: A pharmacologic characterization of an investigational agent for the treatment of schizophrenia. Neuropharmacology, 62(2), 1152–1161. doi:10.1016/j.neuropharm.2011.11.008
Andrew, A., Knapp, M., McCrone, P. R., Parsonage, M., & Trachtenberg, M. (2012). Effective interventions in schizophrenia: the economic case. London School of Economics and Political Science Personal Social Services Research Unit (PSSRU), 2012.
Angrist, B., & Van Kammen, D. P. (1984). CNS stimulants as tools in the study of schizophrenia. Trends in Neurosciences, 7(10), 388–390. doi:10.1016/S0166-2236(84)80062-4
Aragon, C., & Lopez-Corcuera, B. (2003). Structure, function and regulation of glycine neurotransporters. European Journal of Pharmacology, 479(1-3), 249–262. doi:10.1016/j.ejphar.2003.08.074
Arvanov, V. L., Liang, X., Schwartz, J., Grossman, S., & Wang, R. Y. (1997). Clozapine and haloperidol modulate N-methyl-D-aspartate- and non-N-methyl-D-aspartate receptor-mediated neurotransmission in rat prefrontal cortical neurons in vitro. The Journal of Pharmacology and Experimental Therapeutics, 283(1), 226–234.
Bading, H., Ginty, D. D., & Greenberg, M. E. (1993). Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science, 260(5105), 181–186. doi: 10.1126/science.8097060
Baldridge, E. B., & Bessen, H. A. (1990). Phencyclidine. Emerg Med Clin North Am., 8, 541–550.
Balu, D. T., Basu, A. C., Corradi, J. P., Cacace, A. M., & Coyle, J. T. (2012). The NMDA receptor co-agonists, D-serine and glycine, regulate neuronal dendritic architecture in the somatosensory cortex. Neurobiology of Disease, 45(2), 671–82. doi:10.1016/j.nbd.2011.10.006
Balu, D. T., Li, Y., Puhl, M. D., Benneyworth, M. A., Basu, A. C., Takagi, S., … Coyle, J. T. (2013). Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction. Proceedings of the National Academy of Sciences, 110(26), E2400–9. doi:10.1073/pnas.1304308110
Bardgett, M. E., Boeckman, R., Krochmal, D., Fernando, H., Ahrens, R., & Csernansky, J. G. (2003). NMDA receptor blockade and hippocampal neuronal loss impair fear conditioning and position habit reversal in C57Bl/6 mice. Brain Research Bulletin, 60(1-2), 131–142. doi:10.1016/S0361-9230(03)00023-6
Basu, A. C., Tsai, G. E., Ma, C. L., Ehmsen, J. T., Mustafa, A. K., Han, L., … Coyle, J. T. (2008). Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Molecular Psychiatry, 14(7), 719–727. doi:10.1038/mp.2008.130
Bendikov, I., Nadri, C., Amar, S., Panizzutti, R., De Miranda, J., Wolosker, H., & Agam, G. (2007). A CSF and postmortem brain study of d-serine metabolic parameters in schizophrenia. Schizophrenia Research, 90(1-3), 41–51. doi:10.1016/j.schres.2006.10.010
Bergeron, R., Meyer, T. M., Coyle, J. T., & Greene, R. W. (1998). Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proceedings of the National Academy of Sciences, 95(26), 15730–15734. doi:10.1073/pnas.95.26.15730
Bliss, T. V., & Collingridge, G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 361(6407), 31–39. doi:10.1038/361031a0
Borroni, E., Zhou, Y., Ostrowitzki, S., Alberati, D., Kumar, A., Hainzl, D., … Wong, D. F. (2013). Pre-clinical characterization of [11C]R05013853 as a novel radiotracer for imaging of the glycine transporter type 1 by positron emission tomography. NeuroImage, 75, 291–300. doi:10.1016/j.neuroimage.2011.11.090
Boulay, D., Pichat, P., Dargazanli, G., Estennebouhtou, G., Terranova, J., Rogacki, N., … Desvignes, C. (2008). Characterization of SSR103800, a selective inhibitor of the glycine transporter-1 in models predictive of therapeutic activity in schizophrenia. Pharmacology Biochemistry and Behavior, 91(1), 47–58. doi:10.1016/j.pbb.2008.06.009
Braff, D. L., Geyer, M. a., & Swerdlow, N. R. (2001). Human studies of prepulse inhibition of startle: Normal subjects, patient groups, and pharmacological studies. Psychopharmacology, 156(2-3), 234-258. doi:10.1007/s002130100810
Bubenikova-Valesova, V., Horacek, J., Vrajova, M., & Hoschl, C. (2008). Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neuroscience and Biobehavioral Reviews, 32(5), 1014–23. doi:10.1016/j.neubiorev.2008.03.012
Buchanan, R. W., Javitt, D. C., Marder, S. R., Schooler, N. R., Gold, J. M., McMahon, R. P., … Carpenter, W. T. (2007). The Cognitive and Negative Symptoms in Schizophrenia Trial (CONSIST): The efficacy of glutamatergic agents for negative symptoms and cognitive impairments. American Journal of Psychiatry, 164(10), 1593–1602. doi: 10.1176/appi.ajp.2007.06081358
Bugarski-Kirola, D., Wang, A., Abi-Saab, D., & Blattler, T. (2014). A phase II/III trial of bitopertin monotherapy compared with placebo in patients with an acute exacerbation of schizophrenia - Results from the CandleLyte study. European Neuropsychopharmacology, 24(7), 1024–1036. doi: 10.1016/j.euroneuro.2014.03.007
Cardno, A. G., & Gottesman, I. I. (2000). Twin studies of schizophrenia: From bow-and-arrow concordances to star wars Mx and functional genomics. American Journal of Medical Genetics, 97(1), 12–17. doi:10.1002/(SICI)1096-8628(200021)97:1<12::AID-AJMG3>3.0.CO;2-U
Caseella, N. G., Maeeiardi, F., Cavallini, C., & Smeraldi, E. (1994). Neural Transmission treatment in schizophrenia : an open-label study. J Neural Transm Gen Sect, 95, 105–111.
Cernei, N., Zitka, O., Skalickova, S., Gumulec, J., Sztalmachova, M., Rodrigo, M.A. ... Kizek, R. (2013). Effect of sarcosine on antioxidant parameters and metallothionein content in the PC-3 prostate cancer cell line. Oncology Reports, 29(6), 2459-2466. doi:10.3892/or.2013.2389
Chatterton, J. E., Awobuluyi, M., Premkumar, L. S., Takahashi, H., Talantova, M., Shin, Y., … Zhang, D. (2002). Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature, 415(6873), 793–798. doi:10.1038/nature715
Chen, H. H., Stoker, A., & Markou, A. (2010). The glutamatergic compounds sarcosine and N-acetylcysteine ameliorate prepulse inhibition deficits in metabotropic glutamate 5 receptor knockout mice. Psychopharmacology, 209(4), 343–50. doi:10.1007/s00213-010-1802-2
Chumakov, I., Blumenfeld, M., Guerassimenko, O., Cavarec, L., Palicio, M., Abderrahim, H., … Cohen, D. (2002). Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proceedings of the National Academy of Sciences, 99(21), 13675–13680. doi:10.1073/pnas.182412499
Costa, J., Khaled, E., Sramek, J., Bunney, W., & Potkin, S. G. (1990). An open trial of glycine as an adjunct to neuroleptics in chronic treatment-refractory schizophrenics. Journal of Clinical Psychopharmacology, 10(1), 71–72. doi:10.1097/00004714-199002000-00027
Cubelos, B., Gimenez, C., & Zafra, F. (2005). Localization of the GLYT1 glycine transporter at glutamatergic synapses in the rat brain. Cerebral Cortex, 15(4), 448–459. doi:10.1093/cercor/bhh147
Cull-Candy, S., Brickley, S., & Farrant, M. (2001). NMDA receptor subunits: Diversity, development and disease. Current Opinion in Neurobiology, 11(3), 327–335. doi:10.1016/S0959-4388(00)00215-4
da Silva, L. D. B., Leipnitz, G., Seminotti, B., Fernandes, C. G., Beskow, A. P., Amaral, A. U., & Wajner, M. (2009). D-Serine induces lipid and protein oxidative damage and decreases glutathione levels in brain cortex of rats. Brain Research, 1256(6), 34–42. doi:10.1016/j.brainres.2008.12.036
Davis, L., & Kahn, S. (1991). Dopamine in schizophrenia: a review and reconceptualization. American Journal of Psychiatry, 148(11), 1474–1486.
Davis-MacNevin, P. L., Dekraker, J., LaDouceur, L., & Holahan, M. R. (2013). Comparison of the MK-801-induced increase in non-rewarded appetitive responding with dopamine agonists and locomotor activity in rats. Journal of Psychopharmacology, 27(9), 854–64. doi:10.1177/0269881113492029
de Bejczy, A., Nations, K. R., Szegedi, A., Schoemaker, J., Ruwe, F., & Soderpalm, B. (2014). Efficacy and Safety of the Glycine Transporter-1 Inhibitor Org 25935 for the Prevention of Relapse in Alcohol-Dependent Patients: A Randomized, Double-Blind, Placebo-Controlled Trial. Alcoholism: Clinical and Experimental Research, 38(9), 2427–2435. doi:10.1111/acer.12501
Depoortere, R., Dargazanli, G., Estenne-Bouhtou, G., Coste, A., Lanneau, C., Desvignes, C., … Scatton, B. (2005). Neurochemical, electrophysiological and pharmacological profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychotic. Neuropsychopharmacology, 30(11), 1963–1985. doi:10.1038/sj.npp.1300772
DeVito, L. M., Balu, D. T., Kanter, B. R., Lykken, C., Basu, A. C., Coyle, J. T., Eichenbaum, H. (2011). Serine racemase deletion disrupts memory for order and alters cortical dendritic morphology. Genes, Brain and Behavior, 10(2), 210–222. doi:10.1111/j.1601-183X.2010.00656.x
Dongen, A. M. V. (Ed.). (2009). Biology of the NMDA Receptor. Frontiers in Neuroscience, CRC Press.
Drejer, J., & Honore, T. (1987). Phencyclidine analogues inhibit NMDA-stimulated [3H]GABA release from cultured cortex neurons. European Journal of Pharmacology, 143(2), 287–290. doi:10.1016/0014-2999(87)90546-2
Duncan, E. J., Szilagyi, S., Schwartz, M. P., Bugarski-Kirola, D., Kunzova, A., Negi, S., … Rotrosen, J. P. (2004). Effects of D-cycloserine on negative symptoms in schizophrenia. Schizophrenia Research, 71(2-3), 239–248. doi:10.1016/j.schres.2004.03
Duncan, G. E., Leipzig, J. N., Mailman, R. B., & Lieberman, J. a. (1998). Differential effects of clozapine and haloperidol on ketamine-induced brain metabolic activation. Brain Research, 812(1-2), 65–75. doi:10.1016/S0006-8993(98)00926-3
Eaton, W. W., Martins, S. S., Nestadt, G., Bienvenu, O. J., Clarke, D., & Alexandre, P. (2008). The burden of mental disorders. Epidemiologic Reviews. 30(1), 1–14. doi:10.1093/epirev/mxn011
Egerton, A., Reid, L., McGregor, S., Cochran, S. M., Morris, B. J., & Pratt, J. a. (2008). Subchronic and chronic PCP treatment produces temporally distinct deficits in attentional set shifting and prepulse inhibition in rats. Psychopharmacology, 198(1), 37–49. doi:10.1007/s00213-008-1071-5
Erhardt, S., Blennow, K., Nordin, C., Skogh, E., Lindstrom, L. . H., & Engberg, G. (2001). Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neuroscience Letters, 313(1-2), 96–98.
Ermilov, M., Gelfin, E., Levin, R., Lichtenberg, P., Hashimoto, K., Javitt, D. C., & Heresco-Levy, U. (2013). A pilot double-blind comparison of d-serine and high-dose olanzapine in treatment-resistant patients with schizophrenia. Schizophrenia Research. 150(2-3), 604–605. doi:10.1016/j.schres.2013.09.018
Evins, A. E., Fitzgerald, S. M., Wine, L., Rosselli, R., & Goff, D. C. (2000). Placebo-controlled trial of glycine added to clozapine in schizophrenia. American Journal of Psychiatry, 157(5), 826–828. doi:10.1176/appi.ajp.157.5.826
Fadda, E., Danysz, W., Wroblewski, J. T., & Costa, E. (1988). Glycine and D-serine increase the affinity of N-methyl-D-aspartate sensitive glutamate binding sites in rat brain synaptic membranes. Neuropharmacology, 27(11), 1183–1185. doi:10.1016/0028-3908(88)90015-9
Fanous, A. H., Van Den Oord, E. J., Riley, B. P., Aggen, S. H., Neale, M. C., O’Neill, F. A., … Kendler, K. S. (2005). Relationship between a high-risk haplotype in the DTNBP1 (dysbindin) gene and clinical features of schizophrenia. American Journal of Psychiatry, 162(10), 1824–1832. doi:10.1176/appi.ajp.162.10.1824
Farley, S., Dumas, S., El Mestikawy, S., & Giros, B. (2012). Increased expression of the Vesicular Glutamate Transporter-1 (VGLUT1) in the prefrontal cortex correlates with differential vulnerability to chronic stress in various mouse strains: effects of fluoxetine and MK-801. Neuropharmacology, 62(1), 503–17. doi:10.1016/j.neuropharm.2011.09.010
Fernandez, I., Pena, A., Del Teso, N., Perez, V., & Rodriguez-Cuesta, J. (2010). Clinical biochemistry parameters in C57BL/6J mice after blood collection from the submandibular vein and retroorbital plexus. Journal of the American Association for Laboratory Animal Science, 49(2), 202–206.
Ferraris, D., Duvall, B., Ko, Y.-S., Thomas, A. G., Rojas, C., Majer, P., … Tsukamoto, T. (2008). Synthesis and biological evaluation of D-amino acid oxidase inhibitors. Journal of Medicinal Chemistry, 51(12), 3357–3359. doi:10.1021/jm800200u
Foster, A. C., & Wong, E. H. F. (1987). The novel anticonvulsant MK-801 binds to the activated state of the N-methyl-D-aspartate receptor in rat brain. British Journal of Pharmacology, 91(2), 403–409.
Freedman, R. (2003). Schizophrenia. New England Journal of Medicine, 371(8), 744–756. doi:10.1056/NEJMra1313875
Geyer, M. a., Krebs-Thomson, K., Braff, D. L., & Swerdlow, N. R. (2001). Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology, 156(2-3), 117–154. doi:10.1007/s002130100811
Goff, D. C., Guochuan, T., Manoach, D. S., & Coyle, J. T. (1995). Dose-Finding Trial of D-Cycloserine for Negative Symptoms. American Journal of Psychiatry, 152(12), 1213–1215.
Goff, D. C., Henderson, D. C., Evins, a. E., & Amico, E. (1999). A placebo-controlled crossover trial of D-cycloserine added to clozapine in patients with schizophrenia. Biological Psychiatry, 45(4), 512–514. doi:10.1016/S0006-3223(98)00367-9
Goff, D. C., Herz, L., Posever, T., Shih, V., Tsai, G., Henderson, D. C., … Schoenfeld, D. (2005). A six-month, placebo-controlled trial of d-cycloserine co-administered with conventional antipsychotics in schizophrenia patients. Psychopharmacology, 179(1), 144–150. doi:10.1007/s00213-004-2032-2
Goff, D. C., Tsai, G., Levitt, J., Amico, E., Manoach, D., Schoenfeld, D. A., … Coyle, J. T. (1999). A placebo-controlled trial of D-cycloserine added to conventional neuroleptics in patients with schizophrenia. Archives of general psychiatry, 56(1), 21–27. doi:10.1001/archpsyc.56.1.21
Goff, D. C., Tsai, G., Manoach, D. S., Flood, J., Darby, D. G., & Coyle, J. T. (1996). D-cycloserine added to clozapine for patients with schizophrenia. American Journal of Psychiatry, 153(12), 1628–1630.
Goltsov, a Y., Loseva, J. G., Andreeva, T. V, Grigorenko, a P., Abramova, L. I., Kaleda, V. G., … Rogaev, E. I. (2006). Polymorphism in the 5’-promoter region of serine racemase gene in schizophrenia. Molecular Psychiatry, 11(4), 325–326. doi:10.1038/sj.mp.4001801
Gomeza, J., Hulsmann, S., Ohno, K., Eulenburg, V., Szoke, K., Richter, D., & Betz, H. (2003). Inactivation of the glycine transporter 1 gene discloses vital role of glial glycine uptake in glycinergic inhibition. Neuron, 40(4), 785–796. doi:10.1016/S0896-6273(03)00672-X
Green, M. F. (1996). What are the functional consequences of neurocognitive deficits in schizophrenia ? American Journal of Psychiatry, 153(3), 321–330.
Green, M. F. (2006). Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. The Journal of Clinical Psychiatry, 67(10), 3-8. doi:10.4088/JCP.1006e12
Hahn, C. G., Wang, H. Y., Cho, D. S., Talbot, K., Gur, R. E., Berrettini, W. H., … Arnold, S. E. (2006). Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nature Medicine, 12(7), 824–828. doi:10.1038/nm1418
Hall, J., Whalley, H. C., Moorhead, T. W. J., Baig, B. J., McIntosh, A. M., Job, D. E., … Johnstone, E. C. (2008). Genetic Variation in the DAOA (G72) Gene Modulates Hippocampal Function in Subjects at High Risk of Schizophrenia. Biological Psychiatry, 64(5), 428–433. doi:10.1016/j.biopsych.2008.03.009
Harada, K., Nakato, K., Yarimizu, J., Yamazaki, M., Morita, M., Takahashi, S., … Matsuoka, N. (2012). A novel glycine transporter-1 (GlyT1) inhibitor, ASP2535 (4-[3-isopropyl-5-(6-phenyl-3-pyridyl)-4H-1,2,4-triazol-4-yl]-2,1,3-benzoxadiazole), improves cognition in animal models of cognitive impairment in schizophrenia and Alzheimer’s disease. European Journal of Pharmacology, 685(1–3), 59–69. doi:10.1016/j.ejphar.2012.04.013
Harrison, P. J., & Weinberger, D. R. (2005). Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Molecular Psychiatry, 10(1), 40–68. doi:10.1038/sj.mp.4001686
Harsing, L. G., Juranyi, Z., Gacsalyi, I., Tapolcsanyi, P., Czompa, A., & Matyus, P. (2006). Glycine transporter type-1 and its inhibitors. Current Medicinal Chemistry, 13(9), 1017–1044. doi:10.2174/092986706776360932
Harvey, R. J., & Yee, B. K. (2013). Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain. Nature Reviews. Drug Discovery, 12(11), 866–85. doi:10.1038/nrd3893
Hashimoto, K. (2010a). Comments on “The effect of risperidone on D-amino acid oxidase activity as a hypothesis for a novel mechanism of action in the treatment of schizophrenia”. Journal of Psychopharmacology, 24(7), 1133–1134. doi:10.1177/0269881109348177
Hashimoto, K. (2010b). Glycine Transport Inhibitors for the Treatment of Schizophrenia. Open Medicinal Chemistry Journal, 4(4), 10–19.
Hashimoto, K. (2011). Glycine transporter-1: a new potential therapeutic target for schizophrenia. Current Pharmaceutical Design, 17(2), 112–120. doi:10.2174/138161211795049598
Hashimoto, K., Fujita, Y., Horio, M., Kunitachi, S., Iyo, M., Ferraris, D., & Tsukamoto, T. (2009). Co-Administration of a D-Amino Acid Oxidase Inhibitor Potentiates the Efficacy of D-Serine in Attenuating Prepulse Inhibition Deficits After Administration of Dizocilpine. Biological Psychiatry, 65(12), 1103–1106. doi:10.1016/j.biopsych.2009.01.002
Hashimoto, K., Fujita, Y., Ishima, T., Chaki, S., & Iyo, M. (2008). Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the glycine transporter-1 inhibitor NFPS and d-serine. European Neuropsychopharmacology, 18(6), 414–421. doi:10.1016/j.euroneuro.2007.07.009
Hashimoto, K., Malchow, B., Falkai, P., & Schmitt, A. (2013). Glutamate modulators as potential therapeutic drugs in schizophrenia and affective disorders. European Archives of Psychiatry and Clinical Neuroscience, 263(5), 367–377. doi:10.1007/s00406-013-0399-y
Heresco-Levy, U., Durrant, A. R., Ermilov, M., Javitt, D. C., Miya, K., & Mori, H. (2015). Clinical and Electrophysiological Effects of D-Serine in a Schizophrenia Patient Positive for Anti-N-Methyl-D-Aspartate Receptor Antibodies. Biological Psychiatry, 77(6), e27–e29. doi:10.1016/j.biopsych.2014.08.023
Heresco-Levy, U., Ermilov, M., Lichtenberg, P., Bar, G., & Javitt, D. C. (2004). High-dose glycine added to olanzapine and risperidone for the treatment of schizophrenia. Biological Psychiatry, 55(2), 165–171. doi:10.1016/S0006-3223(03)00707-8
Heresco-Levy, U., Ermilov, M., Shimoni, J., Shapira, B., Silipo, G., & Javitt, D. C. (2002). Placebo-controlled trial of D-cycloserine added to conventional neuroleptics, olanzapine, or risperidone in schizophrenia. American Journal of Psychiatry, 159(3), 480–482. doi:10.1176/appi.ajp.159.3.480
Heresco-Levy, U., & Javitt, D. C. (2004). Comparative effects of glycine and D-cycloserine on persistent negative symptoms in schizophrenia: A retrospective analysis. Schizophrenia Research, 66(2-3), 89–96. doi:10.1016/S0920-9964(03)00129-4
Heresco-Levy, U., Javitt, D. C., Ebstein, R., Vass, A., Lichtenberg, P., Bar, G., … Ermilov, M. (2005). D-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biological Psychiatry, 57(6), 577–585. doi:10.1016/j.biopsych.2004.12.037
Heresco-Levy, U., Javitt, D. C., Ermilov, M., Mordel, C., Horowitz, A., & Kelly, D. (1996). Double-blind, placebo-controlled, crossover trial of glycine adjuvant therapy for treatment-resistant schizophrenia. The British Journal of Psychiatry. 169(5), 610–617. doi:10.1192/bjp.169.5.610
Heresco-Levy, U., Javitt, D. C., Ermilov, M., Mordel, C., Silipo, G., & Lichtenstein, M. (1999). Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Archives of General Psychiatry, 56(1), 29–36. doi:10.1001/archpsyc.56.1.29
Holcomb, H. H., Lahti, A. C., Medoff, D. R., Cullen, T., & Tamminga, C. a. (2005). Effects of noncompetitive NMDA receptor blockade on anterior cingulate cerebral blood flow in volunteers with schizophrenia. Neuropsychopharmacology, 30(12), 2275–2282. doi:10.1038/sj.npp.1300824
Horio, M., Fujita, Y., Ishima, T., Iyo, M., Ferraris, D., Tsukamoto, T., & Hashimoto, K. (2009). Effects of D-Amino Acid Oxidase Inhibitor on the Extracellular D-Alanine Levels and the Efficacy of D-Alanine on Dizocilpine-Induced Prepulse Inhibition Deficits in Mice. The Open Clinical Chemistry Journal, 2(1), 16–21. doi:10.2174/1874241600902010016
Hougland, M. T., Gao, Y., Herman, L., Ng, C. K., Lei, Z., & El-Mallakh, R. S. (2008). Positron emission tomography with fluorodeoxyglucose-F18 in an animal model of mania. Psychiatry Research: Neuroimaging, 164(2), 166–171. doi:10.1016/j.pscychresns.2008.01.004
Huang, C.-C., Wei, I.-H., Huang, C.-L., Chen, K.-T., Tsai, M.-H., Tsai, P., … Tsai, G. E. (2013). Inhibition of glycine transporter-I as a novel mechanism for the treatment of depression. Biological Psychiatry, 74(10), 734–41. doi:10.1016/j.biopsych.2013.02.020
Igartua, I., Solis, J. M., & Bustamante, J. (2007). Glycine-induced long-term synaptic potentiation is mediated by the glycine transporter GLYT1. Neuropharmacology, 52(8), 1586–1595. doi:10.1016/j.neuropharm.2007.03.003
Issaq, H. J., & Veenstra, T. D. (2011). Is sarcosine a biomarker for prostate cancer? Journal of Separation Science, 34(24), 3619–3621. doi:10.1002/jssc.201100572
Iwana, S., Kawazoe, T., Park, H. K., Tsuchiya, K., Ono, K., Yorita, K., … Fukui, K. (2008). Chlorpromazine oligomer is a potentially active substance that inhibits human D-amino acid oxidase, product of a susceptibility gene for schizophrenia. Journal of Enzyme Inhibition and Medicinal Chemistry, 23(6), 901–911. doi:10.1080/14756360701745478
Jackson, M. E., Homayoun, H., & Moghaddam, B. (2004). NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proceedings of the National Academy of Sciences, 101(22), 8467–8472. doi:10.1073/pnas.0308455101
Jana, A., Modi, K. K., Roy, A., Anderson, J. a., Van Breemen, R. B., & Pahan, K. (2013). Up-regulation of neurotrophic factors by cinnamon and its metabolite sodium benzoate: Therapeutic implications for neurodegenerative disorders. Journal of Neuroimmune Pharmacology, 8(3), 739–755. doi:10.1007/s11481-013-9447-7
Jansen, A., Krach, S., Krug, A., Markov, V., Eggermann, T., Zerres, K., … Kircher, T. (2009). A putative high risk diplotype of the G72 gene is in healthy individuals associated with better performance in working memory functions and altered brain activity in the medial temporal lobe. NeuroImage, 45(3), 1002–1008. doi:10.1016/j.neuroimage.2008.12.054
Javitt, D. C., Silipo, G., Cienfuegos, A., Shelley, a M., Bark, N., Park, M., … Zukin, S. R. (2001). Adjunctive high-dose glycine in the treatment of schizophrenia. The international journal of neuropsychopharmacology, 4(4), 385–391. doi:10.1017/S1461145701002590
Javitt, D. C., & Zukin, S. R. (1991). Recent advances in the phencyclidine model of schizophrenia. American Journal of Psychiatry, 148, 1301–1308.
Javitt, D. C., Zukin, S. R., Heresco-Levy, U., & Umbricht, D. (2012). Has an angel shown the way? Etiological and therapeutic implications of the PCP/NMDA model of schizophrenia. Schizophrenia Bulletin, 38(5), 958–966. doi:10.1093/schbul/sbs069
Javitt, D. C., Zylberman, I., Zukin, S. R., Heresco-Levy, U., & Lindenmayer, J. P. (1994). Amelioration of negative symptoms in schizophrenia by glycine. American Journal of Psychiatry, 151(8), 1234–1236.
Jentsch, J. D., Tran, a, Le, D., Youngren, K. D., & Roth, R. H. (1997). Subchronic phencyclidine administration reduces mesoprefrontal dopamine utilization and impairs prefrontal cortical-dependent cognition in the rat. Neuropsychopharmacology, 17(2), 92-99. doi:10.1016/S0893-133X(97)00034-1
Kantrowitz, J. T., Malhotra, A. K., Cornblatt, B., Silipo, G., Balla, A., Suckow, R. F., … Javitt, D. C. (2010). High dose D-serine in the treatment of schizophrenia. Schizophrenia Research, 121(1-3), 125–130. doi:10.1016/j.schres.2010.05.012
Kapoor, R., Lim, K. S., Cheng, A., Garrick, T., & Kapoor, V. (2006). Preliminary evidence for a link between schizophrenia and NMDA-glycine site receptor ligand metabolic enzymes, d-amino acid oxidase (DAAO) and kynurenine aminotransferase-1 (KAT-1). Brain Research, 1106(1), 205–210. doi:10.1016/j.brainres.2006.05.082
Kapur, S., & Mamo, D. (2003). Half a century of antipsychotics and still a central role for dopamine D2 receptors. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 27, 1081–1090. doi:10.1016/j.pnpbp.2003.09.004
Kapur, S., & Remington, G. (2001). Dopamine D(2) receptors and their role in atypical antipsychotic action: still necessary and may even be sufficient. Biological Psychiatry, 50(01), 873–883.
Karasawa, J., Hashimoto, K., & Chaki, S. (2008). d-Serine and a glycine transporter inhibitor improve MK-801-induced cognitive deficits in a novel object recognition test in rats. Behavioural Brain Research, 186(1), 78–83. doi:10.1016/j.bbr.2007.07.033
Kargieman, L., Santana, N., Mengod, G., Celada, P., & Artigas, F. (2007). Antipsychotic drugs reverse the disruption in prefrontal cortex function produced by NMDA receptor blockade with phencyclidine. Proceedings of the National Academy of Sciences, 104(37), 14843–14848. doi:10.1073/pnas.0704848104
Karlsgodt, K. H., Robleto, K., Trantham-Davidson, H., Jairl, C., Cannon, T. D., Lavin, A., & Jentsch, J. D. (2011). Reduced dysbindin expression mediates N-methyl-D-aspartate receptor hypofunction and impaired working memory performance. Biological Psychiatry, 69(1), 28–34. doi:10.1016/j.biopsych.2010.09.012
Katsuki, H., Nonaka, M., Shirakawa, H., Kume, T., & Akaike, A. (2004). Endogenous D -Serine Is Involved in Induction of Neuronal Death by N -Methyl- D -aspartate and Simulated Ischemia in Rat Cerebrocortical Slices. Journal of Pharmacology and Experimental Therapeutics, 311(2), 836–844. doi:10.1124/jpet.104.070912
Kawaura, K., Koike, H., Kinoshita, K., Kambe, D., Kaku, A., Karasawa, J., … Hikichi, H. (2015). Effects of a glycine transporter-1 inhibitor and D-serine on MK-801- induced immobility in the forced swimming test in rats. Behavioural Brain Research, 278, 186–192. doi:10.1016/j.bbr.2014.09.046
Kegeles, L. S., Abi-Dargham, A., Zea-Ponce, Y., Rodenhiser-Hill, J., Mann, J. J., Van Heertum, R. L., … Laruelle, M. (2000). Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: Implications for schizophrenia. Biological Psychiatry, 48(7), 627–640. doi:10.1016/S0006-3223(00)00976-8
Keilhoff, G., Becker, a., Grecksch, G., Wolf, G., & Bernstein, H. G. (2004). Repeated application of ketamine to rats induces changes in the hippocampal expression of parvalbumin, neuronal nitric oxide synthase and cFOS similar to those found in human schizophrenia. Neuroscience, 126(3), 591–598. doi:10.1016/j.neuroscience.2004.03.039
Kennedy, J. L., Altar, C. A., Taylor, D. L., Degtiar, I., & Hornberger, J. C. (2014). The social and economic burden of treatment-resistant schizophrenia. International Clinical Psychopharmacology, 29(2), 63–76. doi:10.1097/YIC.0b013e32836508e6
Kinney, J. W., Davis, C. N., Tabarean, I., Conti, B., Bartfai, T., & Behrens, M. M. (2006). A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons. The Journal of Neuroscience, 26(5), 1604–1615. doi:10.1523/JNEUROSCI.4722-05.2006
Kish, G. B. (1970). Reduced cognitive innovation and stimulus-seek- ing in chronic schizophrenia. J Clinical Psychiatry, 26, 170–174.
Kopec, K., Flood, D. G., Gasior, M., McKenna, B. A. W., Zuvich, E., Schreiber, J., … Marino, M. J. (2010). Glycine transporter (GlyT1) inhibitors with reduced residence time increase prepulse inhibition without inducing hyperlocomotion in DBA/2 mice. Biochemical Pharmacology, 80(9), 1407–17. doi:10.1016/j.bcp.2010.07.004
Krystal, J. H., Karper, L. P., Seibyl, J. P., Freeman, G. K., Delaney, R., Bremner, J. D., … Charney, D. S. (1994). Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Archives of general psychiatry, 51(3), 199–214. doi:10.1001/archpsyc.1994.03950030035004
Lahti, A. C., Warfel, D., Michaelidis, T., Weiler, M. . A., Frey, K., & Tamminga, C. A. (2001). Long-term outcome of patients who receive ketamine during research. Biological Psychiatry, 49(10), 869–875.
Lane, H. Y., Chang, Y. C., Liu, Y. C., Chiu, C.-C., & Tsai, G. E. (2005). Sarcosine or D-Serine add-on treatment for acute exacerbation of schizophrenia: a randomized, double-blind, placebo-controlled Study. Archives of General Psychiatry, 62(11), 1196–1204. doi:10.1001/archpsyc.62.11.1196
Lane, H. Y., Huang, C. L., Wu, P. L., Liu, Y. C., Chang, Y. C., Lin, P. Y., Chen, P. W. & Tsai, G. (2006). Glycine transporter 1 inhibitor, N-methylglycine (sarcosine), added to clozapine for the treatment of schizophrenia. Biological Psychiatry, 60(6), 645-649. doi:10.1016/j.biopsych.2006.04.005
Lane, H. Y., Liu, Y. C., Huang, C. L., Chang, Y. C., Liau, C. H., Perng, C. H., & Tsai, G. E. (2008). Sarcosine (N-Methylglycine) Treatment for Acute Schizophrenia: A Randomized, Double-Blind Study. Biological Psychiatry, 63(1), 9–12. doi:10.1016/j.biopsych.2007.04.038
Lane, H. Y., Lin, C. H., Huang, Y. J., Liao, C. H., Chang, Y. C., & Tsai, G. E. (2010). A randomized, double-blind, placebo-controlled comparison study of sarcosine (N-methylglycine) and D-serine add-on treatment for schizophrenia. The International Journal of Neuropsychopharmacology, 13(4), 451–460. doi:10.1017/S1461145709990939
Lane, H. Y., Lin, C. H., Green, M. F., Hellemann, G., Huang, C. C., Chen, P. W., … Tsai, G. E. (2013). Add-on treatment of benzoate for schizophrenia: a randomized, double-blind, placebo-controlled trial of d-Amino Acid oxidase inhibitor. JAMA Psychiatry, 90509(12), 1267-1275. doi:10.1001/jamapsychiatry.2013.2159
Laurie, D. J., & Seeburg, P. H. (1994). Ligand affinities at recombinant N-methyl-D-aspartate receptors depend on subunit composition. European Journal of Pharmacology, 268(3), 335–345. doi:10.1016/0922-4106(94)90058-2
Le Pen, G., Kew, J., Alberati, D., Borroni, E., Heitz, M. P., & Moreau, J. L. (2003). Prepulse inhibition deficits of the startle reflex in neonatal ventral hippocampal-lesioned rats: Reversal by glycine and a glycine transporter inhibitor. Biological Psychiatry, 54(11), 1162–1170. doi:10.1016/S0006-3223(03)00374-3
Leiderman, E., Zylberman, I., Zukin, S. R., Cooper, T. B., & Javitt, D. C. (1996). Preliminary investigation of high-dose oral glycine on serum levels and negative symptoms in schizophrenia: An open-label trial. Biological Psychiatry, 39(3), 213–215. doi:10.1016/0006-3223(95)00585-4
Lencz, T., & Malhotra, A. K. (2009). Pharmacogenetics of antipsychotic-induced side effects. Dialogues Clin Neurosci., 11, 405–415.
Lewis, D. A., & Lieberman, J. A. (2000). Catching up on schizophrenia: natural history and neurobiology. Neuron, 28, 325–334. doi:10.1016/S0896-6273(00)00111-2
Li, B., Woo, R. S., Mei, L., & Malinow, R. (2007). The Neuregulin-1 Receptor ErbB4 Controls Glutamatergic Synapse Maturation and Plasticity. Neuron, 54(4), 583–597. doi:10.1016/j.neuron.2007.03.028
Lieberman, J. A., Stroup, T. S., McEvoy, J. P., Swartz, M. S., Rosenheck, R. A., Perkins, D. O., … Hsiao, J. K. (2005). Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. The New England journal of medicine, 353(12), 1209–23. doi:10.1056/NEJMoa051688
Lipina, T., Labrie, V., Weiner, I., & Roder, J. (2005). Modulators of the glycine site on NMDA receptors, D-serine and ALX 5407, display similar beneficial effects to clozapine in mouse models of schizophrenia. Psychopharmacology, 179(1), 54–67. doi:10.1007/s00213-005-2210-x
Lisman, J. E., Coyle, J. T., Green, R. W., Javitt, D. C., Benes, F. M., Heckers, S., & Grace, A. a. (2008). Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends in Neurosciences, 31(5), 234–42. doi:10.1016/j.tins.2008.02.005
Luby, E. D., Gottlieb, J. S., Cohen, B. D., Rosenbaum, G., & Domino, E. F. (1962). Model Psychoses and Schizophrenia. American Journal of Psychiatry, 119(1), 61–67. doi:10.1176/ajp.119.1.61
Madeira, C., Freitas, M. E., Vargas-Lopes, C., Wolosker, H., & Panizzutti, R. (2008). Increased brain d-amino acid oxidase (DAAO) activity in schizophrenia. Schizophrenia Research, 101(1-3), 76–83. doi:10.1016/j.schres.2008.02.002
Manahan-Vaughan, D., Wildforster, V., & Thomsen, C. (2008). Rescue of hippocampal LTP and learning deficits in a rat model of psychosis by inhibition of glycine transporter-1 (GlyT1). European Journal of Neuroscience, 28(7), 1342–1350. doi:10.1111/j.1460-9568.2008.06433.x
Martina, M., Gorfinkel, Y., Halman, S., Lowe, J. A., Periyalwar, P., Christopher, J., & Bergeron, R. (2004). Glycine transporter type 1 blockade changes NMDA receptor-mediated responses and LTP in hippocampal CA1 pyramidal cells by altering extracellular glycine levels, The Journal of Physiology, 557(2), 489–500. doi:10.1113/jphysiol.2004.063321
Mazzaccara, C., Labruna, G., Cito, G., Scarfo, M., De Felice, M., Pastore, L., & Sacchetti, L. (2008). Age-related reference intervals of the main biochemical and hematological parameters in C57BL/6J, 129SV/EV and C3H/HeJ mouse strains. PLoS ONE, 3(11), 4–10. doi:10.1371/journal.pone.0003772
McEvoy, J. P., Lieberman, J. A., Stroup, T. S., Davis, S. M., Meltzer, H. Y., Rosenheck, R. A., … Hsiao, J. K. (2006). Effectiveness of clozapine versus olanzapine, quetiapine, and risperidone in patients with chronic schizophrenia who did not respond to prior atypical antipsychotic treatment. American Journal of Psychiatry, 163(4), 600–610. doi:10.1176/appi.ajp.163.4.600
Miyamoto, S., Leipzig, J. N., Lieberman, J. A., & Duncan, G. E. (2000). Effects of ketamine, MK-801, and amphetamine on regional brain 2-deoxyglucose uptake in freely moving mice. Neuropsychopharmacology, 22(99), 400–412. doi:10.1016/S0893-133X(99)00127-X
Molander, A., Lido, H. H., Lof, E., Ericson, M., & Soderpalm, B. (2007). The glycine reuptake inhibitor org 25935 decreases ethanol intake and preference in male Wistar rats. Alcohol and Alcoholism, 42(1), 11–18. doi:10.1093/alcalc/agl085
Molinaro, G., Traficante, A., Riozzi, B., Di Menna, L., Curto, M., Pallottino, S., … Battaglia, G. (2009). Activation of mGlu2/3 metabotropic glutamate receptors negatively regulates the stimulation of inositol phospholipid hydrolysis mediated by 5-hydroxytryptamine2A serotonin receptors in the frontal cortex of living mice. Molecular Pharmacology, 76(2), 379–387. doi:10.1124/mol.109.056580
Morita, T., Sonoda, R., Nakato, K., Koshiya, K., Wanibuchi, F., & Yamaguchi, T. (2000). Phencyclidine-induced abnormal behaviors in rats as measured by the hole board apparatus. Psychopharmacology, 148(3), 281–288. doi:10.1007/s002130050052
Morita, Y., Ujike, H., Tanaka, Y., Otani, K., Kishimoto, M., Morio, A., … Kuroda, S. (2007). A Genetic Variant of the Serine Racemase Gene Is Associated with Schizophrenia. Biological Psychiatry, 61(10), 1200–1203. doi:10.1016/j.biopsych.2006.07.025
Moy, S. S., Nonneman, R. J., Shafer, G. O., Nikolova, V. D., Riddick, N. V, Agster, K. L., … Knapp, D. J. (2012). Disruption of social approach by MK-801, amphetamine, and fluoxetine in adolescent C57BL/6J mice. Neurotoxicology and Teratology, 36, 36–46. doi:10.1016/j.ntt.2012.07.007
Nic Dhonnchadha, B. A., Pinard, E., Alberati, D., Wettstein, J. G., Spealman, R. D., & Kantak, K. M. (2012). Inhibiting glycine transporter-1 facilitates cocaine-cue extinction and attenuates reacquisition of cocaine-seeking behavior. Drug and Alcohol Dependence, 122(1-2), 119–126. doi:10.1016/j.drugalcdep.2011.09.017
O’Neill, B., Croft, R., Mann, C., Dang, O., Leung, S., Galloway, M., … Nathan, P. (2011). High-dose glycine impairs the prepulse inhibition measure of sensorimotor gating in humans. Journal of Psychopharmacology, 25(12), 1632–1638. doi:10.1177/0269881110372546
Olney, J. W., Labruyere, J., Wang, G., Wozniak, D. F., Price, M. T., & Sesma, M. a. (1991). NMDA antagonist neurotoxicity: mechanism and prevention. Science, 254(5037), 1515–1518. doi:10.1126/science.1835799
Opgen-Rhein, C., Lencz, T., Burdick, K. E., Neuhaus, A. H., DeRosse, P., Goldberg, T. E., & Malhotra, A. K. (2008). Genetic variation in the DAOA gene complex: Impact on susceptibility for schizophrenia and on cognitive performance. Schizophrenia Research, 103(1-3), 169–177. doi:10.1016/j.schres.2008.04.020
Parsons, C. G., Danysz, W., & Quack, G. (1998). Glutamate in CNS disorders as a target fordrug development: an update. Drug News Perspect, 11, 523–569.
Perry, K. W., Falcone, J. F., Fell, M. J., Ryder, J. W., Yu, H., Love, P. L., … Svensson, K. a. (2008). Neurochemical and behavioral profiling of the selective GlyT1 inhibitors ALX5407 and LY2365109 indicate a preferential action in caudal vs. cortical brain areas. Neuropharmacology, 55(5), 743–754. doi:10.1016/j.neuropharm.2008.06.016
Phelps, M. E., Huang, S. C., Hoffman, E. J., Selin, C., Sokoloff, L., & Kuhl, D. E. (1979). Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: Validation of method. Annals of Neurology, 6(5), 371–388. doi:10.1002/ana.410060502
Pinard, E., Alanine, A., Alberati, D., Bender, M., Borroni, E., Bourdeaux, P., … Zimmerli, D. (2010). Selective GlyT1 inhibitors: Discovery of [4-(3-fluoro-5- trifluorome thylpyridin-2-yl)piperazin-1-yl][5-methanesulfonyl-2-((S)-2,2,2- trifluoro-1-methylethoxy)phenyl]methanone (RG1678), a promising novel medicine to treat schizophrenia. Journal of Medicinal Chemistry, 53(12), 4603–4614. doi:10.1021/jm100210p
Potkin, S. G., Costa, J., Roy, S., Jin, Y., & Gulasekaram, B. (1992). Glycine in the treatment of schizophrenia: Theory and preliminary results. Meltzer (Ed.), Novel antipsychotic drugs. New York: Raven Press.
Potkin, S. G., Jin, Y., Bunney, B. G., Costa, J., & Gulasekaram, B. (1999). Effect of clozapine and adjunctive high-dose glycine in treatment- resistant schizophrenia. American Journal of Psychiatry, 156(1), 145–147.
Quartermain, D., Mower, J., Rafferty, M. F., Herting, R. L., & Lanthorn, T. H. (1994). Acute but not chronic activation of the NMDA-coupled glycine receptor with D-cycloserine facilitates learning and retention. European Journal of Pharmacology, 257(1-2), 7–12. doi:10.1016/0014-2999(94)90687-4
Reynolds, G. P., Abdul-Monim, Z., Neill, J. C., & Zhang, Z. J. (2004). Calcium binding protein markers of GABA deficits in schizophrenia--postmortem studies and animal models. Neurotox Res., 6(1), 57–61.
Roche Media Release. (2014). roche provides update on the first two of six phase III studies of bitopertin in schizophrenia. 2014. Retrieved from http://www.roche.com/media
Rosse, R. B., Fay-McCarthy, M., Kendrick, K., Davis, R. E., & Deutsch, S. I. (1996). D-cycloserine adjuvant therapy to molindone in the treatment of schizophrenia. Clinical Neuropharmacology, 19(5), 444–450. doi:10.1097/00002826-199619050-00008
Rosse, R. B., Schwartz, B. L., Davis, R. E., & Deutsch, S. I. (1991). An NMDA intervention strategy in schizophrenia with “low-dose” milacemide. Clinical Neuropharmacology, 14(3), 268–272. doi:10.1097/00002826-199106000-00012
Rosse, R. B., Schwartz, B. L., Leighton, M. P., Davis, R. E., & Deutsch, S. I. (1990). An open-label trial of milacemide in schizophrenia: an NMDA intervention strategy. Clinical Neuropharmacology, 13(4), 348–54.
Schwarcz, R., Rassoulpour, A., Wu, H. Q., Medoff, D., Tamminga, C. a., & Roberts, R. C. (2001). Increased cortical kynurenate content in schizophrenia. Biological Psychiatry, 50(7), 521–530. doi:10.1016/S0006-3223(01)01078-2
Seillier, A., & Giuffrida, A. (2009). Evaluation of NMDA receptor models of schizophrenia: divergences in the behavioral effects of sub-chronic PCP and MK-801. Behavioural Brain Research, 204(2), 410–5. doi:10.1016/j.bbr.2009.02.007
Shih, H.T., & Mok, H. (2000). ETHOM : Event-recording computer software for the study of animal behavior. Acta Zoologica Taiwanica, 11(1), 47–61.
Shimazaki, T., Kaku, A., & Chaki, S. (2010). d-Serine and a glycine transporter-1 inhibitor enhance social memory in rats. Psychopharmacology, 209(3), 263–270. doi:10.1007/s00213-010-1794-y
Simeon, J., Fink, M., Itil, T. M., & Ponce, D. (1970). d-Cycloserine therapy of psychosis by symptom provocation. Comprehensive Psychiatry, 11(1), 80–88. doi:10.1016/0010-440X(70)90207-5
Simpson, E. H., Kellendonk, C., & Kandel, E. (2010). A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron, 65(5), 585–596. doi:10.1016/j.neuron.2010.02.014
Singer, P., Zhang, W., & Yee, B. K. (2013). SSR504734 enhances basal expression of prepulse inhibition but exacerbates the disruption of prepulse inhibition by apomorphine. Psychopharmacology, 230(2), 309–317. doi:10.1007/s00213-013-3160-3
Singh, S. P., & Singh, V. (2011). Meta-analysis of the efficacy of adjunctive NMDA receptor modulators in chronic schizophrenia. CNS Drugs, 25(10), 859–885. doi:10.2165/11586650-000000000-00000
Smith, S. M., Uslaner, J. M., Yao, L., Mullins, C. M., Surles, N. O., Huszar, S. L., … Hutson, P. H. (2009). The Behavioral and Neurochemical Effects of a Novel D -Amino Acid Oxidase Inhibitor Compound 8 [ 4 H -Thieno [3,2-b] pyrrole-5- carboxylic Acid ] and D -Serine. J Pharmacol Exp Ther, 328(3), 921–930. doi:10.1124/jpet.108.147884
Snyder, K. (2006). Kurt Snyder’s personal experience with schizophrenia. Schizophrenia Bulletin, 32(2), 209–211. doi:10.1093/schbul/sbj032
Soyka, M., Koch, W., Moller, H. J., Ruther, T., & Tatsch, K. (2005). Hypermetabolic pattern in frontal cortex and other brain regions in unmedicated schizophrenia patients. Results from a FDG-PET study. European Archives of Psychiatry and Clinical Neuroscience, 255(5), 308–12. doi:10.1007/s00406-005-0563-0
Sreekumar, A., Poisson, L. M., Rajendiran, T. M., Khan, A. P., Cao, Q., Yu, J., … Chinnaiyan, A. M. (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 457(7231), 910–914. doi:10.1038/nature07762
Struys, E. A., Heijboer, A. C., van Moorselaar, J., Jakobs, C., & Blankenstein, M. A. (2010). Serum sarcosine is not a marker for prostate cancer. Annals of Clinical Biochemistry, 47, 282. doi:10.1258/acb.2010.009270
Svensson, T. H. (2000). Dysfunctional brain dopamine systems induced by psychotomimetic NMDA-receptor antagonists and the effects of antipsychotic drugs. Brain Research Reviews, 31(2-3), 320–329. doi:10.1016/S0165-0173(99)00048-X
Svoboda, J., Stankova, A., Entlerova, M., & Stuchlik, A. (2015). Acute administration of MK-801 in an animal model of psychosis in rats interferes with cognitively demanding forms of behavioral flexibility on a rotating arena. Frontiers in Behavioral Neuroscience, 9, 1–8. doi:10.3389/fnbeh.2015.00075
Tamminga, C. A., Cascella, N. G., Fakouhi, T. D., & Herting, R. L. (1992). Enhancement of NMDA-mediated transmission in schizophrenia. Meltzer (Ed.), Novel antipsychotic drugs. New York: Raven Press.
Tamminga, C. A., & Holcomb, H. H. (2005). Phenotype of schizophrenia: a review and formulation. Molecular Psychiatry, 10(1), 27–39. doi:10.1038/sj.mp.4001563
Torrey, E. F., Barci, B. M., Webster, M. J., Bartko, J. J., Meador-Woodruff, J. H., & Knable, M. B. (2005). Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biological Psychiatry, 57(3), 252–260. doi:10.1016/j.biopsych.2004.10.019
Toth, E., & Lajtha, A. (1986). Antagonism of phencyclidine-induced hyperactivity by glycine in mice. Neurochemical Research, 11(3), 393–400. doi:10.1007/BF00965013
Tsai, G. E., & Lin, P.-Y. (2010). Strategies to enhance N-methyl-D-aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis. Current Pharmaceutical Design, 16(5), 522–537. doi:10.2174/138161210790361452
Tsai, G. E., Lane, H. Y., Yang, P., Chong, M. Y., & Lange, N. (2004a). Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biological Psychiatry, 55(5), 452–456. doi:10.1016/j.biopsych.2003.09.012
Tsai, G., Ralh-Williams, R. J., Martina, M., Bergeron, R., Berger-Sweeney, J., Dunham K. S., Jiang, Z. & Caine, S. B. (2004b). Gene knockout of glycine transporter : characterization of the behavioral phenotype. Proceedings of the National Academy of Sciences, 101(22), 8485–8490. doi:10.1073/pnas.0402662101
Tsai, G. E., Yang, P., Chung, L. C., Lange, N., & Coyle, J. T. (1998). D-serine added to antipsychotics for the treatment of schizophrenia. Biological Psychiatry, 44(11), 1081–1089. doi:10.1016/s0006-3223(98)00279-0
Tsai, G. E., Yang, P., Chung, L. C., Tsai, I. C., Tsai, C. W., & Coyle, J. T. (1999). Added to clozapine for the treatment of schizophrenia. American Journal of Psychiatry, 156(11), 1822–1825.
Tsien, J. Z. (2000). Linking Hebb’s coincidence-detection to memory formation. Current Opinion in Neurobiology, 10(2), 266–273. doi:10.1016/S0959-4388(00)00070-2
Tsukada, H., Nishiyama, S., Fukumoto, D., Sato, K., Kakiuchi, T., & Domino, E. F. (2005). Chronic NMDA antagonism impairs working memory, decreases extracellular dopamine, and increases D1 receptor binding in prefrontal cortex of conscious monkeys. Neuropsychopharmacology, 30(10), 1861–1869. doi:10.1038/sj.npp.1300732
Tuominen, H. J., Tiihonen, J., & Wahlbeck, K. (2005). Glutamatergic drugs for schizophrenia: A systematic review and meta-analysis. Schizophrenia Research, 72(2-3), 225–234. doi:10.1016/j.schres.2004.05.005
Uehara, T., Sumiyoshi, T., Seo, T., Itoh, H., Matsuoka, T., Suzuki, M., & Kurachi, M. (2009). Long-term effects of neonatal MK-801 treatment on prepulse inhibition in young adult rats. Psychopharmacology, 206(4), 623–630. doi:10.1007/s00213-009-1527-2
Umbricht, D., Alberati, D., Martin-Facklam, M., Borroni, E., Youssef, E. a, Ostland, M., … Santarelli, L. (2014). Effect of Bitopertin, a Glycine Reuptake Inhibitor, on Negative Symptoms of Schizophrenia: A Randomized, Double-Blind, Proof-of-Concept Study. JAMA Psychiatry, 71(6), 637–46. doi:10.1001/jamapsychiatry.2014.163
Van Berckel, B. N. M., Evenblij, C. N., Van Loon, B. J. a M., Maas, M. F., Van Der Geld, M. a M., Wynne, H. J., … Kahn, R. S. (1999). D-cycloserine increases positive symptoms in chronic schizophrenic patients when administered in addition to antipsychotics: A double-blind, parallel, placebo-controlled study. Neuropsychopharmacology, 21(2), 203–210. doi:10.1016/S0893-133X(99)00014-7
Van Berckel, B. N. M., Hijman, R., Van Der Linden, J. a., Westenberg, H. G. M., Van Ree, J. M., & Kahn, R. S. (1996). Efficacy and tolerance of D-cycloserine in drug-free schizophrenic patients. Biological Psychiatry, 40(12), 1298–1300. doi:10.1016/S0006-3223(96)00311-3
Van der Staay, F. J., Rutten, K., Erb, C., & Blokland, A. (2011). Effects of the cognition impairer MK-801 on learning and memory in mice and rats. Behavioural Brain Research, 220(1), 215–229. doi:10.1016/j.bbr.2011.01.052
Vengeliene, V., Leonardi-Essmann, F., Sommer, W. H., Marston, H. M., & Spanagel, R. (2010). Glycine transporter-1 blockade leads to persistently reduced relapse-like alcohol drinking in rats. Biological Psychiatry, 68(8), 704–711. doi:10.1016/j.biopsych.2010.05.029
Verrall, L., Burnet, P. W. J., Betts, J. F., & Harrison, P. J. (2010). The neurobiology of D-amino acid oxidase and its involvement in schizophrenia. Molecular Psychiatry, 15(2), 122–137. doi:10.1038/mp.2009.99
Verrall, L., Walker, M., Rawlings, N., Benzel, I., Kew, J. N. C., Harrison, P. J., & Burnet, P. W. J. (2007). D-Amino acid oxidase and serine racemase in human brain: Normal distribution and altered expression in schizophrenia. European Journal of Neuroscience, 26(6), 1657–1669. doi:10.1111/j.1460-9568.2007.05769.x
Vollenweider, F. X., Leenders, K. L., Scharfetter, C., Antonini, A., Maguire, P., & Missimer, J. (1997). Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography ( PET ) and [ 18 F ] fluorodeoxyglucose ( FDG ). European Neuropsychopharmacology, 7, 9–24.
Wang, R. Y., & Liang, X. (1998). M100907 and clozapine, but not haloperidol or raclopride, prevent phencyclidine-induced blockade of NMDA responses in pyramidal neurons of the rat medial prefrontal cortical slice. Neuropsychopharmacology, 19(1), 74–85. doi:10.1016/S0893-133X(98)00003-7
Waziri, R. (1988). Glycine Therapy of Schizophrenia. Biological Psychiatry, 23(2), 210–211. doi:10.1016/0006-3223(88)90093-5
Weickert, C. S., Fung, S. J., Catts, V. S., Schofield, P. R., Allen, K. M., Moore, L. T., … Weickert, T. W. (2012). Molecular evidence of N-methyl-D-aspartate receptor hypofunction in schizophrenia. Molecular Psychiatry, 18(11), 1185–1192. doi:10.1038/mp.2012.137
Welker W.I. (1962). An analysis of exploratory and play behavior in animals. In: Fiske DW, Maddi SR (eds) Functions of varied experience. Dorsey, Homewood, Ill., pp 175–226
Wong, E. H., Kemp, J. a, Priestley, T., Knight, a R., Woodruff, G. N., & Iversen, L. L. (1986). The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proceedings of the National Academy of Sciences, 83(18), 7104–7108. doi:10.1073/pnas.83.18.7104
Wu, J., Zou, H., Strong, J. a, Yu, J., Zhou, X., Xie, Q., … Yu, L. (2005). Bimodal effects of MK-801 on locomotion and stereotypy in C57BL/6 mice. Psychopharmacology, 177(3), 256–63. doi:10.1007/s00213-004-1944-1
Yamada, S., Harano, M., Annoh, N., Nakamura, K., & Tanaka, M. (1999). Involvement of serotonin 2A receptors in phencyclidine-induced disruption of prepulse inhibition of the acoustic startle in rats. Biological Psychiatry, 46(6), 832–838. doi:10.1016/S0006-3223(98)00356-4
Yang, S. Y., Hong, C. J., Huang, Y. H., & Tsai, S. J. (2010). The effects of glycine transporter I inhibitor, N-methylglycine (sarcosine), on ketamine-induced alterations in sensorimotor gating and regional br ain c-Fos expression in rats. Neuroscience Letters, 469(1), 127–30. doi:10.1016/j.neulet.2009.11.058
Yin, B., & Meck, W. H. (2014). Comparison of interval timing behaviour in mice following dorsal or ventral hippocampal lesions with mice having δ-opioid receptor gene deletion. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1637), 20120466. doi:10.1098/rstb.2012.0466
Zafra, F., Aragon, C., Olivares, L., Danbolt, N. C., Gimenez, C., & Storm-Mathisen, J. (1995a). Glycine transporters are differentially expressed among CNS cells. The Journal of Neuroscience, 15(5), 3952–3969.
Zafra, F., Gomeza, J., Olivares, L., Aragon, C., & Gimenez, C. (1995b). Regional distribution and developmental variation of the glycine transporters GLYT1 and GLYT2 in the rat CNS. European Journal of Neuroscience, 7(6), 1342–1352. doi:10.1111/j.1460-9568.1995.tb01125.x
Zhang, H., Lyons-Warren, A., & Thio, L. (2009). The glycine transport inhibitor sarcosine is an inhibitory glycine receptor agonist. Neuropharmacology, 57(5-6), 551–555. doi:10.1016/j.neuropharm.2009.07.019


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top