跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/29 23:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭筑文
研究生(外文):Chu-Wen Cheng
論文名稱:硫酸化醣質體之奈米液相層析串聯式質譜分析技術的研發與應用
論文名稱(外文):Development and Applications of Negative Ion Mode nanoLC−MS/MS-Based Sulfoglycomics
指導教授:邱繼輝邱繼輝引用關係
口試委員:林俊成張權發陳頌方何銘益
口試日期:2015-06-17
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:144
中文關鍵詞:硫酸化醣質體
外文關鍵詞:sulfoglycomics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
醣質體質譜分析平台期望能全盤性的分析在特定的病理以及生理狀況下,細胞或組織的醣類組成。目前已知硫酸化修飾的醣類參與許多重要的生物進程,然而由於硫酸化修飾的醣類很微量並且不易被游離化,常常無法被現行的醣質體質譜分析平台偵測,因此,在本研究中我們將醣質體質譜分析平台,從現行的基質輔助雷射脫附離子化質譜為基礎的分析流程加以延伸並進展到更先進的電噴灑離子化質譜為基礎的分析,期望能提升偵測的極限。本實驗室在之前已經建立利用陰離子交換固相萃取法,有效的萃取全甲基化硫酸化的醣類,因此當我們在負電模式下使用電噴灑離子化質譜為基礎的質譜分析搭配陰離子交換固相萃取法實際應用來分析人工培養的人類支氣管上皮細胞,我們發現帶有兩個硫酸基的醣類會帶兩個電荷,並且使其被偵測的敏感度提升,此外,當我們在前端搭載了奈米液相層析管柱更可以提升偵測敏感度以及增加進樣的樣品量,使我們可以得到更多的斷片圖譜。並且我們也藉由一系列的標準品以及萃取自人工培養的人類支氣管上皮細胞的醣類,系統性地探討由高能誘導裂解技術以及碰撞誘導裂解技術所產生出來的斷片,找出了其中最具有代表性的斷片。另外,我們也在此研究中展現在負電模式下使用奈米液相層析-質譜分析技術時,若同時使用高能誘導裂解技術以及碰撞誘導裂解技術配搭特徵子代離子控制三次質譜斷裂,可以有效的分析全甲基化後各式各樣帶有鹽藻醣或唾液酸的硫酸化醣結構之同分異構物,並在研究中展現如何應用這些分析結果,而這些我們人工確認過的資料組,每一個都有不同的質/荷數字,分別代表著不同的醣類結構組成,將來都可以在軟體開發上當作很好的參考依據。除此之外,當我們利用我們所建立的方法來分析老鼠以及人類的嗜酸性球,我們發現了一種用基質輔助雷射脫附離子化質譜為基礎的分析方法所無法偵測到的新奇硫酸化醣類結構,即末端的唾液酸帶有硫酸基的結構,由於之前的研究報導過海膽含有C8位置硫酸化的NeuNAc與NeuGc結構,因此我們更進一步利用從海膽萃取的醣脂來建立鑑定硫酸化唾液酸所需要的的特徵離子。我們也分析了一系列的細胞株以幫助我們更進一步了解細胞表面的硫酸化唾液酸在不同組織的分布情形。另外,為了瞭解醣類硫酸化以及沒有硫酸化的比例,我們也成功的改良氣相層析鍵結分析法將其應用在正電模式下的液相層析質譜中,並且相對定量出在牛的甲狀腺球蛋白中不含硫酸基、帶有一個硫酸基以及兩個硫酸基的醣比例分別為82:13:8。總結來說,透過我們最新開發的奈米液相層析之質譜方法,我們可以得到更多更高敏感度的硫酸化醣質體之定量以及定性的資訊,這些資訊都將提供我們了解有關於硫酸化醣類在生物體中的功能表現以及生理上扮演的重要性。

Mass spectrometry (MS)-based glycomics aims to comprehensively map all the glycan constituents of a cell or tissue under a particular patho-physiological state. Sulfated glycans are known to participate in many important biological processes but often under-detected or represented in MS-based glycomics due to their lower abundance and ionization problems. Thus, in my study, we aim to extend and complement our MALDI-MS and MS/MS-based sulfoglycomic workflow with advanced nanoLC-MS/MS-based strategy to improve the detection limit. By the anion-exchange solid-phase extraction method established previously in our laboratory, permethylated sulfated glycans could be efficiently extracted from the total pool of glycans. After applying the strategy to the cultured human bronchial epithelial cells, we now showed that these can be analyzed by nanoLC-ESI-MS/MS in negative ion mode, which is more conducive than MALDI-MS for sensitive detection of doubly charged di-sulfated glycans. The additional coupling of nanoLC separation prior to MS improves the detection sensitivity and handling capacity for comprehensive analysis, therefore, more MS/MS spectra could be obtained. We have now systematically investigated the most useful fragmentation characteristics afforded by higher energy collision dissociation (HCD) versus ion trap CID, based on a panel of synthetic standards and a complex pool of sulfated glycans derived from cultured human bronchial epithelial cells. We show that an efficient mapping of various isomeric fucosylated, sialylated, sulfated glycotopes by negative ion mode nanoLC-MS/MS analysis of permethylated glycans can benefit from data dependent parallel acquisition of both HCD and ion trap CID MS2, supplemented further by a product ion dependent MS3 scan function, and how the generated data can be productively utilized. The manually verified dataset of over hundred glycan entries, each represented by a distinct m/z value and hence glycosyl composition, additionally serves to guide current development of much needed computational tool for sulfoglycomic data analysis and presentation. When applied to both mouse and human eosinophils, we could observe novel sulfated glycans otherwise not detected by MALDI-based strategy, and additionally identified the occurrence of sulfate on terminal sialic acid. Therefore, we further utilized glycolipid derived from sea urchin, which is already known to contain sulfate at C8 position of NeuNAc and NeuGc to establish the characteristic ion of sulfated sialic acid on mass spectrometry. Moreover, in order to map the occurrence of sulfated sialic acid on the surface of cells in different tissues, series of cell line were applied to do the glycomic analysis. In addition, to evaluate the ratio of non-sulfated versus sulfated glycans, we have successfully adapted the well-established GC-MS linkage analysis method of partially methylated alditol acetate (PMAA) to targeted LC-MS/MS analysis in positive ion mode and quantified the ratio among non-sulfated, mono-sulfated, and di-sulfated glycans in bovine thyroglobulin as 82:13:8. In conclusion, by the newly developed nanoLC-MS/MS strategies, we can now obtain more qualitative and quantitative information of the sulfated glycome at higher sensitivity, which would be important in understanding their functional expression and physiological relevance in biological systems.

中文摘要 1
ABSTRACT 3
CHAPTER 1: INTRODUCTION 12
1.1 GLYCOSYLATION 12
1.2 IMPORTANCE OF SULFATED N- AND O-GLYCANS IN BIOLOGICAL SYSTEMS 13
1.3 ROLES OF SULFATED GLYCANS IN EOSINOPHILS APOPTOSIS 14
1.4 GLCNAC/GAL/GALNAC-6-O-SULFOTRANSFERASE (GST) FAMILY 16
1.5 CURRENT STATUS OF MASS SPECTROMETRY-BASED GLYCOMICS AND SULFOGLYCOMICS 18
1.6 NANOELECTROSPRAY IONIZATION (NANOESI) MASS SPECTROMETRY INSTRUMENTATION 20
1.7 SPECIFIC AIMS 21
CHAPTER 2: MATERIALS AND METHODS 24
2.1 GLYCAN STANDARDS, SAMPLE SOURCE 24
2.2 RELEASE GLYCANS FROM TISSUE OR CELL LINES 27
2.3 PERMETHYLATION, ENRICHMENT AND CLEAN UP OF SULFATED GLYCANS 27
2.4 MASS SPECTROMETRY ANALYSIS 28
2.5 QUANTIFICATION OF THE TOTAL AMOUNT OF SULFATED GLYCANS RELATIVE TO NON-SULFATED ONES 29
CHAPTER 3: RESULTS 30
3.1 ESTABLISHING LC-MS/MS BASED SULFOGLYCOMIC ANALYSIS 30
3.1.1 NanoLC-MS characteristics of permethylated sulfated glycans 30
3.1.2 Characteristic MS2 ions afforded by permethylated sulfated glycans 32
3.1.3 Parallel HCD and CID MS2 with product dependent MS3 34
3.1.4 Additional MS2 features for doubly charged disulfated O-glycans. 37
3.1.5 Overall sulfoglycomic features. 40
3.1.6 Quantification of the total amount of sulfated glycans relative to non-sulfated ones. 42
3.2 TO IDENTIFY THE POSSIBLE LIGANDS OF SIGLEC-F AND SIGLEC-8 BY SULFOGLYCOMIC ANALYSIS 72
3.2.1 Sulfoglycomics analysis of mouse eosinophils 73
3.2.2 Sulfoglycomics analysis of mouse BAL fluid 76
3.2.3 Sulfoglycomics analysis of mouse lung 77
3.3 TO MAP THE CELL TYPE DISTRIBUTION OF SULFATED SIALIC ACID BY LC-MS/MS BASED SULFOGLYCOMIC ANALYSIS 96
3.3.1 Validating the diagnostic fragment ions of sulfated sialic acid 97
3.3.2 Occurrence of sulfated sialic acid on mouse testis. 98
3.3.3 Occurrence of sulfated sialic acid on other human cells 99
3.3.4 Brief summary of the O-glycans containing sulfated sialic acid 101
CHAPTER 4: DISCUSSION AND CONCLUSIONS 127
4.1 CURRENT STATUS OF LC-MS/MS BASED SULFOGLYCOMICS 127
4.2 FUTURE PERSPECTIVE FOR MS-BASED SULFOGLYCOMICS 128
4.3 BIOLOGICAL IMPLICATION FROM NANOLC-BASED SULFOGLYCOMICS 130
REFERENCE 134
ABBREVIATION 144



Allen, H.J., Ahmed, H., and Matta, K.L. (1998). Binding of synthetic sulfated ligands by human splenic galectin 1, a beta-galactoside-binding lectin. Glycoconj J 15, 691-695.
Angata, T., Hingorani, R., Varki, N.M., and Varki, A. (2001). Cloning and characterization of a novel mouse Siglec, mSiglec-F: differential evolution of the mouse and human (CD33) Siglec-3-related gene clusters. J Biol Chem 276, 45128-45136.
Balog, C.I., Stavenhagen, K., Fung, W.L., Koeleman, C.A., McDonnell, L.A., Verhoeven, A., Mesker, W.E., Tollenaar, R.A., Deelder, A.M., and Wuhrer, M. (2012). N-glycosylation of colorectal cancer tissues: a liquid chromatography and mass spectrometry-based investigation. Mol Cell Proteomics 11, 571-585.
Bistrup, A., Bhakta, S., Lee, J.K., Belov, Y.Y., Gunn, M.D., Zuo, F.R., Huang, C.C., Kannagi, R., Rosen, S.D., and Hemmerich, S. (1999). Sulfotransferases of two specificities function in the reconstitution of high endothelial cell ligands for L-selectin. J Cell Biol 145, 899-910.
Bochner, B.S. (2009). Siglec-8 on human eosinophils and mast cells, and Siglec-F on murine eosinophils, are functionally related inhibitory receptors. Clin Exp Allergy 39, 317-324.
Bochner, B.S., Alvarez, R.A., Mehta, P., Bovin, N.V., Blixt, O., White, J.R., and Schnaar, R.L. (2005). Glycan array screening reveals a candidate ligand for Siglec-8. J Biol Chem 280, 4307-4312.
Bowman, K.G., and Bertozzi, C.R. (1999). Carbohydrate sulfotransferases: mediators of extracellular communication. Chem Biol 6, R9-R22.
Bulai, T., Bratosin, D., Pons, A., Montreuil, J., and Zanetta, J.P. (2003). Diversity of the human erythrocyte membrane sialic acids in relation with blood groups. FEBS Lett 534, 185-189.
Campanero-Rhodes, M.A., Childs, R.A., Kiso, M., Komba, S., Le Narvor, C., Warren, J., Otto, D., Crocker, P.R., and Feizi, T. (2006). Carbohydrate microarrays reveal sulphation as a modulator of siglec binding. Biochem Biophys Res Commun 344, 1141-1146.
Cheng, P.F., Snovida, S., Ho, M.Y., Cheng, C.W., Wu, A.M., and Khoo, K.H. (2013). Increasing the depth of mass spectrometry-based glycomic coverage by additional dimensions of sulfoglycomics and target analysis of permethylated glycans. Anal Bioanal Chem 405, 6683-6695.
Domon, B., and Costello, C.E. (1988). A Systematic Nomenclature for Carbohydrate Fragmentations in Fab-Ms Ms Spectra of Glycoconjugates. Glycoconj J 5, 397-409.
Dwyer, C.A., Katoh, T., Tiemeyer, M., and Matthews, R.T. (2015). Neurons and glia modify RPTPzeta/phosphacan with cell-specific O-mannosyl glycans in the developing brain. J Biol Chem.
Falany, C.N. (1997). Enzymology of human cytosolic sulfotransferases. FASEB J 11, 206-216.
Floyd, H., Ni, J., Cornish, A.L., Zeng, Z., Liu, D., Carter, K.C., Steel, J., and Crocker, P.R. (2000). Siglec-8. A novel eosinophil-specific member of the immunoglobulin superfamily. J Biol Chem 275, 861-866.
Fukuda, M., Hiraoka, N., Akama, T.O., and Fukuda, M.N. (2001). Carbohydrate-modifying sulfotransferases: structure, function, and pathophysiology. J Biol Chem 276, 47747-47750.
Fukuta, M., Inazawa, J., Torii, T., Tsuzuki, K., Shimada, E., and Habuchi, O. (1997). Molecular cloning and characterization of human keratan sulfate Gal-6-sulfotransferase. J Biol Chem 272, 32321-32328.
Fuster, M.M., and Esko, J.D. (2005). The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5, 526-542.
Guo, J.P., Brummet, M.E., Myers, A.C., Na, H.J., Rowland, E., Schnaar, R.L., Zheng, T., Zhu, Z., and Bochner, B.S. (2011). Characterization of expression of glycan ligands for Siglec-F in normal mouse lungs. Am J Respir Cell Mol Biol 44, 238-243.
Habuchi, O., Hirahara, Y., Uchimura, K., and Fukuta, M. (1996). Enzymatic sulfation of galactose residue of keratan sulfate by chondroitin 6-sulfotransferase. Glycobiology 6, 51-57.
Habuchi, O., Suzuki, Y., and Fukuta, M. (1997). Sulfation of sialyl lactosamine oligosaccharides by chondroitin 6-sulfotransferase. Glycobiology 7, 405-412.
Harvey, D.J. (2005). Structural determination of N-linked glycans by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. Proteomics 5, 1774-1786.
Hemmerich, S., and Rosen, S.D. (2000). Carbohydrate sulfotransferases in lymphocyte homing. Glycobiology 10, 849-856.
Hiraoka, N., Petryniak, B., Nakayama, J., Tsuboi, S., Suzuki, M., Yeh, J.C., Izawa, D., Tanaka, T., Miyasaka, M., Lowe, J.B., et al. (1999). A novel, high endothelial venule-specific sulfotransferase expresses 6-sulfo sialyl Lewis(x), an L-selectin ligand displayed by CD34. Immunity 11, 79-89.
Hitchcock, A.M., Yates, K.E., Costello, C.E., and Zaia, J. (2008). Comparative glycomics of connective tissue glycosaminoglycans. Proteomics 8, 1384-1397.
Hortin, G., Green, E.D., Baenziger, J.U., and Strauss, A.W. (1986). Sulphation of proteins secreted by a human hepatoma-derived cell line. Sulphation of N-linked oligosaccharides on alpha 2HS-glycoprotein. Biochem J 235, 407-414.
Ichimiya, T., Nishihara, S., Takase-Yoden, S., Kida, H., and Aoki-Kinoshita, K. (2014). Frequent glycan structure mining of influenza virus data revealed a sulfated glycan motif that increased viral infection. Bioinformatics 30, 706-711.
Ji, I.J., Hua, S., Shin, D.H., Seo, N., Hwang, J.Y., Jang, I.S., Kang, M.G., Choi, J.S., and An, H.J. (2015). Spatially-Resolved Exploration of the Mouse Brain Glycome by Tissue Glyco-Capture (TGC) and Nano-LC/MS. Anal Chem 87, 2869-2877.
Joncquel Chevalier Curt, M., Lecointe, K., Mihalache, A., Rossez, Y., Gosset, P., Leonard, R., and Robbe-Masselot, C. (2015). Alteration or adaptation, the two roads for human gastric mucin glycosylation infected by Helicobacter pylori. Glycobiology.
Karlsson, N.G., and Thomsson, K.A. (2009). Salivary MUC7 is a major carrier of blood group I type O-linked oligosaccharides serving as the scaffold for sialyl Lewis x. Glycobiology 19, 288-300.
Kawashima, H. (2006). Roles of sulfated glycans in lymphocyte homing. Biol Pharm Bull 29, 2343-2349.
Khoo, K.H., and Yu, S.Y. (2010). Mass spectrometric analysis of sulfated N- and O-glycans. Methods Enzymol 478, 3-26.
Kikly, K.K., Bochner, B.S., Freeman, S.D., Tan, K.B., Gallagher, K.T., D''Alessio K, J., Holmes, S.D., Abrahamson, J.A., Erickson-Miller, C.L., Murdock, P.R., et al. (2000). Identification of SAF-2, a novel siglec expressed on eosinophils, mast cells, and basophils. J Allergy Clin Immunol 105, 1093-1100.
Kimura, N., Ohmori, K., Miyazaki, K., Izawa, M., Matsuzaki, Y., Yasuda, Y., Takematsu, H., Kozutsumi, Y., Moriyama, A., and Kannagi, R. (2007). Human B-lymphocytes express alpha2-6-sialylated 6-sulfo-N-acetyllactosamine serving as a preferred ligand for CD22/Siglec-2. J Biol Chem 282, 32200-32207.
Kitagawa, H., Fujita, M., Ito, N., and Sugahara, K. (2000). Molecular cloning and expression of a novel chondroitin 6-O-sulfotransferase. J Biol Chem 275, 21075-21080.
Kiwamoto, T., Brummet, M.E., Wu, F., Motari, M.G., Smith, D.F., Schnaar, R.L., Zhu, Z., and Bochner, B.S. (2014a). Mice deficient in the St3gal3 gene product alpha2,3 sialyltransferase (ST3Gal-III) exhibit enhanced allergic eosinophilic airway inflammation. J Allergy Clin Immunol 133, 240-247 e241-243.
Kiwamoto, T., Katoh, T., Evans, C.M., Janssen, W.J., Brummet, M.E., Hudson, S.A., Zhu, Z., Tiemeyer, M., and Bochner, B.S. (2014b). Endogenous airway mucins carry glycans that bind Siglec-F and induce eosinophil apoptosis. J Allergy Clin Immunol.
Kiwamoto, T., Katoh, T., Tiemeyer, M., and Bochner, B.S. (2013). The role of lung epithelial ligands for Siglec-8 and Siglec-F in eosinophilic inflammation. Current opinion in allergy and clinical immunology 13, 106-111.
Kiwamoto, T., Kawasaki, N., Paulson, J.C., and Bochner, B.S. (2012). Siglec-8 as a drugable target to treat eosinophil and mast cell-associated conditions. Pharmacol Ther 135, 327-336.
Kobayashi, M., Mitoma, J., Hoshino, H., Yu, S.Y., Shimojo, Y., Suzawa, K., Khoo, K.H., Fukuda, M., and Nakayama, J. (2011). Prominent expression of sialyl Lewis X-capped core 2-branched O-glycans on high endothelial venule-like vessels in gastric MALT lymphoma. J Pathol 224, 67-77.
Kubo, H., and Hoshi, M. (1990). Immunocytochemical study of the distribution of a ganglioside in sea urchin eggs. J Biochem 108, 193-199.
Kubo, H., Irie, A., Inagaki, F., and Hoshi, M. (1990). Gangliosides from the eggs of the sea urchin, Anthocidaris crassispina. J Biochem 108, 185-192.
Lee, J.K., Bhakta, S., Rosen, S.D., and Hemmerich, S. (1999). Cloning and characterization of a mammalian N-acetylglucosamine-6-sulfotransferase that is highly restricted to intestinal tissue. Biochem Biophys Res Commun 263, 543-549.
Lee, N.A., McGarry, M.P., Larson, K.A., Horton, M.A., Kristensen, A.B., and Lee, J.J. (1997). Expression of IL-5 in thymocytes/T cells leads to the development of a massive eosinophilia, extramedullary eosinophilopoiesis, and unique histopathologies. J Immunol 158, 1332-1344.
Lin, C.H., Kuo, C.W., Jarvis, D.L., and Khoo, K.H. (2014). Facile removal of high mannose structures prior to extracting complex type N-glycans from de-N-glycosylated peptides retained by C18 solid phase to allow more efficient glycomic mapping. Proteomics 14, 87-92.
Morelle, W., Slomianny, M.C., Diemer, H., Schaeffer, C., van Dorsselaer, A., and Michalski, J.C. (2004). Fragmentation characteristics of permethylated oligosaccharides using a matrix-assisted laser desorption/ionization two-stage time-of-flight (TOF/TOF) tandem mass spectrometer. Rapid Commun Mass Spectrom 18, 2637-2649.
Morimoto, N., Nakano, M., Kinoshita, M., Kawabata, A., Morita, M., Oda, Y., Kuroda, R., and Kakehi, K. (2001). Specific distribution of sialic acids in animal tissues as examined by LC-ESI-MS after derivatization with 1,2-diamino-4,5-methylenedioxybenzene. Anal Chem 73, 5422-5428.
Patnode, M.L., Cheng, C.W., Chou, C.C., Singer, M.S., Elin, M.S., Uchimura, K., Crocker, P.R., Khoo, K.H., and Rosen, S.D. (2013a). Galactose 6-O-sulfotransferases are not required for the generation of Siglec-F ligands in leukocytes or lung tissue. J Biol Chem 288, 26533-26545.
Patnode, M.L., Yu, S.Y., Cheng, C.W., Ho, M.Y., Tegesjo, L., Sakuma, K., Uchimura, K., Khoo, K.H., Kannagi, R., and Rosen, S.D. (2013b). KSGal6ST generates galactose-6-O-sulfate in high endothelial venules but does not contribute to L-selectin-dependent lymphocyte homing. Glycobiology 23, 381-394.
Pazynina, G.V., Severov, V.V., Maisel, M.L., Belyanchikov, I.M., and Bovin, N.V. (2008). Synthesis of mono-, di- and tri-O-sulfated N-acetyllactosamines in a form suitable for glycochip printing. Mendeleev Commun 18, 238-240.
Rosen, S.D. (2004). Ligands for L-selectin: homing, inflammation, and beyond. Annu Rev Immunol 22, 129-156.
Senko, M.W., Remes, P.M., Canterbury, J.D., Mathur, R., Song, Q., Eliuk, S.M., Mullen, C., Earley, L., Hardman, M., Blethrow, J.D., et al. (2013). Novel parallelized quadrupole/linear ion trap/Orbitrap tribrid mass spectrometer improving proteome coverage and peptide identification rates. Anal Chem 85, 11710-11714.
Song, D.J., Cho, J.Y., Lee, S.Y., Miller, M., Rosenthal, P., Soroosh, P., Croft, M., Zhang, M., Varki, A., and Broide, D.H. (2009a). Anti-Siglec-F antibody reduces allergen-induced eosinophilic inflammation and airway remodeling. J Immunol 183, 5333-5341.
Song, D.J., Cho, J.Y., Miller, M., Strangman, W., Zhang, M., Varki, A., and Broide, D.H. (2009b). Anti-Siglec-F antibody inhibits oral egg allergen induced intestinal eosinophilic inflammation in a mouse model. Clin Immunol 131, 157-169.
Spina, E., Sturiale, L., Romeo, D., Impallomeni, G., Garozzo, D., Waidelich, D., and Glueckmann, M. (2004). New fragmentation mechanisms in matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry of carbohydrates. Rapid Commun Mass Spectrom 18, 392-398.
Stephens, E., Maslen, S.L., Green, L.G., and Williams, D.H. (2004). Fragmentation characteristics of neutral N-linked glycans using a MALDI-TOF/TOF tandem mass spectrometer. Anal Chem 76, 2343-2354.
Struwe, W.B., Gough, R., Gallagher, M.E., Kenny, D.T., Carrington, S.D., Karlsson, N.G., and Rudd, P.M. (2015). Identification of O-glycan structures from chicken intestinal mucins provides insight into Campylobactor jejuni pathogenicity. Mol Cell Proteomics.
Suzukawa, M., Miller, M., Rosenthal, P., Cho, J.Y., Doherty, T.A., Varki, A., and Broide, D. (2013). Sialyltransferase ST3Gal-III regulates Siglec-F ligand formation and eosinophilic lung inflammation in mice. J Immunol 190, 5939-5948.
Tateno, H., Crocker, P.R., and Paulson, J.C. (2005). Mouse Siglec-F and human Siglec-8 are functionally convergent paralogs that are selectively expressed on eosinophils and recognize 6''-sulfo-sialyl Lewis X as a preferred glycan ligand. Glycobiology 15, 1125-1135.
Tateno, H., Ohnishi, K., Yabe, R., Hayatsu, N., Sato, T., Takeya, M., Narimatsu, H., and Hirabayashi, J. (2010). Dual specificity of Langerin to sulfated and mannosylated glycans via a single C-type carbohydrate recognition domain. J Biol Chem 285, 6390-6400.
Thomsson, K.A., Holmen-Larsson, J.M., Angstrom, J., Johansson, M.E., Xia, L., and Hansson, G.C. (2012). Detailed O-glycomics of the Muc2 mucin from colon of wild-type, core 1- and core 3-transferase-deficient mice highlights differences compared with human MUC2. Glycobiology 22, 1128-1139.
Torii, T., Fukuta, M., and Habuchi, O. (2000). Sulfation of sialyl N-acetyllactosamine oligosaccharides and fetuin oligosaccharides by keratan sulfate Gal-6-sulfotransferase. Glycobiology 10, 203-211.
Tu, Z., Hsieh, H.W., Tsai, C.M., Hsu, C.W., Wang, S.G., Wu, K.J., Lin, K.I., and Lin, C.H. (2013). Synthesis and characterization of sulfated Gal-beta-1,3/4-GlcNAc disaccharides through consecutive protection/glycosylation steps. Chem Asian J 8, 1536-1550.
Uchimura, K., Kadomatsu, K., Fan, Q.W., Muramatsu, H., Kurosawa, N., Kaname, T., Yamamura, K., Fukuta, M., Habuchi, O., and Muramatsu, T. (1998a). Mouse chondroitin 6-sulfotransferase: molecular cloning, characterization and chromosomal mapping. Glycobiology 8, 489-496.
Uchimura, K., Kadomatsu, K., Nishimura, H., Muramatsu, H., Nakamura, E., Kurosawa, N., Habuchi, O., El-Fasakhany, F.M., Yoshikai, Y., and Muramatsu, T. (2002). Functional analysis of the chondroitin 6-sulfotransferase gene in relation to lymphocyte subpopulations, brain development, and oversulfated chondroitin sulfates. J Biol Chem 277, 1443-1450.
Uchimura, K., Muramatsu, H., Kadomatsu, K., Fan, Q.W., Kurosawa, N., Mitsuoka, C., Kannagi, R., Habuchi, O., and Muramatsu, T. (1998b). Molecular cloning and characterization of an N-acetylglucosamine-6-O-sulfotransferase. J Biol Chem 273, 22577-22583.
Uchimura, K., Muramatsu, H., Kaname, T., Ogawa, H., Yamakawa, T., Fan, Q.W., Mitsuoka, C., Kannagi, R., Habuchi, O., Yokoyama, I., et al. (1998c). Human N-acetylglucosamine-6-O-sulfotransferase involved in the biosynthesis of 6-sulfo sialyl Lewis X: molecular cloning, chromosomal mapping, and expression in various organs and tumor cells. J Biochem 124, 670-678.
Yu, H., Chokhawala, H., Karpel, R., Yu, H., Wu, B., Zhang, J., Zhang, Y., Jia, Q., and Chen, X. (2005). A multifunctional Pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries. J Am Chem Soc 127, 17618-17619.
Yu, H., Huang, S., Chokhawala, H., Sun, M., Zheng, H., and Chen, X. (2006a). Highly efficient chemoenzymatic synthesis of naturally occurring and non-natural alpha-2,6-linked sialosides: a P. damsela alpha-2,6-sialyltransferase with extremely flexible donor-substrate specificity. Angew Chem Int Ed Engl 45, 3938-3944.
Yu, S.Y., Chang, L.Y., Cheng, C.W., Chou, C.C., Fukuda, M.N., and Khoo, K.H. (2013). Priming mass spectrometry-based sulfoglycomic mapping for identification of terminal sulfated lacdiNAc glycotope. Glycoconj J 30, 183-194.
Yu, S.Y., Khoo, K.H., Yang, Z., Herp, A., and Wu, A.M. (2008). Glycomic mapping of O- and N-linked glycans from major rat sublingual mucin. Glycoconj J 25, 199-212.
Yu, S.Y., Wu, S.W., Hsiao, H.H., and Khoo, K.H. (2009). Enabling techniques and strategic workflow for sulfoglycomics based on mass spectrometry mapping and sequencing of permethylated sulfated glycans. Glycobiology 19, 1136-1149.
Yu, S.Y., Wu, S.W., and Khoo, K.H. (2006b). Distinctive characteristics of MALDI-Q/TOF and TOF/TOF tandem mass spectrometry for sequencing of permethylated complex type N-glycans. Glycoconj J 23, 355-369.
Zaia, J. (2009). On-line separations combined with MS for analysis of glycosaminoglycans. Mass Spectrom Rev 28, 254-272.
Zanetta, J.P., Pons, A., Iwersen, M., Mariller, C., Leroy, Y., Timmerman, P., and Schauer, R. (2001). Diversity of sialic acids revealed using gas chromatography/mass spectrometry of heptafluorobutyrate derivatives. Glycobiology 11, 663-676.
Zhang, J.Q., Biedermann, B., Nitschke, L., and Crocker, P.R. (2004). The murine inhibitory receptor mSiglec-E is expressed broadly on cells of the innate immune system whereas mSiglec-F is restricted to eosinophils. Eur J Immunol 34, 1175-1184.
Zhang, M., Angata, T., Cho, J.Y., Miller, M., Broide, D.H., and Varki, A. (2007). Defining the in vivo function of Siglec-F, a CD33-related Siglec expressed on mouse eosinophils. Blood 109, 4280-4287.
Zimmermann, N., McBride, M.L., Yamada, Y., Hudson, S.A., Jones, C., Cromie, K.D., Crocker, P.R., Rothenberg, M.E., and Bochner, B.S. (2008). Siglec-F antibody administration to mice selectively reduces blood and tissue eosinophils. Allergy 63, 1156-1163.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文