跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃意霖
研究生(外文):Yi- Lin Huang
論文名稱:薑黃素引發斑馬魚肌肉病變之分子機制探討
論文名稱(外文):Molecular mechanism of curcumin-induced myopathy in zebrafish
指導教授:黃銓珍
指導教授(外文):Chang-Jen Huang
口試委員:黃鵬鵬張茂山
口試委員(外文):Pung-Pung HwangMau-Sun Chang
口試日期:2015-06-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:59
中文關鍵詞:薑黃素斑馬魚肌肉病變海藻糖組蛋白去乙醯化酶
外文關鍵詞:curcuminzebrafishmyopathytrehalosehistone deacetylase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
  薑黃素(curcumin)為薑黃根莖中的主要色素,早期用來做食品加工的食用色素。其藥理特性也受到注目,如降血脂、抗氧化等機制也陸續有研究報導。近年研究將薑黃素歸類為組蛋白去乙醯酶(histone deacetylase)抑制劑之一,其中抗癌及毒殺細胞為主要特性。而在早些實驗室的研究中發現,將斑馬魚胚胎以薑黃素處理,發現會有尾部病變的現象。
  在本研究中,我們對薑黃素引發斑馬魚肌肉病變之機制進行探討。我們發現尾部病變的比例會隨著薑黃素濃度上升,其發生速度也會因溫度提高而加快。而根據延時錄相我們發現這是一個連續性的肌肉病變現象。接著,我們利用轉基因斑馬魚(krt4:mCherry, ap:GFP)發現薑黃素會造成斑馬魚胚胎尾部的表皮和肌肉損傷,最後造成胚胎的死亡。而我們也利用質譜分析這些尾部損傷後細胞崩解釋出的蛋白。此外,在斑馬魚原位基因雜交和免疫螢光染色實驗中,我們發現經由薑黃素處理的斑馬魚胚胎尾部其層黏蛋白(laminin)的表現量下降,失去了對魚體尾部的保護,導致尾部病變的發生。我們也試著探討薑黃素分子作用機制,我們利用干擾核酸(morpholino)注射斑馬魚胚胎,降低蛋白去乙醯酶(histone deacetylase)表現,發現並沒有與薑黃素同樣的尾部潰爛現象。
  最後,我們利用了許多免疫抑制劑試著抑制薑黃素引發的尾部病變現象,我們找到了海藻糖(trehalose)可以抑制尾部病變的發生,保持斑馬魚胚胎尾部完整使胚胎得以繼續存活。


Abstract
  Curcumin (diferuloylmethane) is a pigment derived from the plant species Curcuma longa, which is frequently added in food for spice. In addition, it has been reported to be a new member of the histone deacetylase (HDAC) inhibitors and anti- cancer drug. In our previous studies, we found that curcumin functioned in inducing myopathy in zebrafish embryos during early developmental stages.
  In this study, our data indicated that curcumin- induced myopathy were in a dose and temperature- dependent manner. Then, a time-lapse recording was shown curcumin- induced myopathy with continuous damages. On the other hand, we used tissue specific transgenic lines to label keratinocytes and muscle cells (krt4:mCherry, ap:GFP). After the muscle damage occurred, the muscle cells and keratinocytes started to collapse and released the component proteins of the cells. We then detected these proteins in Mass analysis.
  The in situ hybridization and whole mount immunostaining analysis were performed to analyze this myopathy of zebrafish embryo. We found that the expression of laminin, a protein for tail bud and membrane structure, was decreased in curcumin treated embryos. To investigate possible mechanism of curcumin- induded myopathy in zebrafish embryos, we injected morpholino (MO) to knock down HDCA1 and HDAC8 expression, but it couldn’t recapitulate the phenotype of curcumin- induced myopathy.
  Finally, we used this zebrafish model to screen several known inhibitors, such as apoptosis inhibitors, autophagy inhibitors and immunosuppressors with the roles to inhibit the progression of curcumin-induced myopathy. Interestingly, a TOR independent autophagy inducer, inhibited curcumin- induced myopathy effectively.

Content .................................................. I
中文摘要 ................................................. IV
Abstract ................................................. V
Introduction ............................................. 1
Curcumin ................................................. 1
Histone deacetylases (HDACs)..... ........................ 1
Myopathy...................................................3
Rapamycin and TOR .........................................4
Trehalose..................................................5
Specific aims .............................................8
Materials and methods ................................... 10
Materials ............................................... 10
Animal model............................................. 10
Culture, plasmid ........................................ 10
Drugs, enzymes, reagents ................................ 10
RNA in situ hybridization reagents .......................10
Methods ................................................. 11
Zebrafish care .......................................... 11
RNA probe preperation ................................... 12
Polymerase chain reaction (polymerase chain reaction) ... 12
DNA ligation............................................. 13
Transformation .......................................... 13
Whole-mount in situ hybridization........................ 13
Injection of morpholinos................................. 15
Whole-mount immunostaining .............................. 16
AO staining.............................................. 17
TUNEL assay.............................................. 17
Time-lapse recording and confocal images................. 18
Treatment of curcumin.................................... 18
Proteomic analysis....................................... 18
Results ................................................. 22
The phenotype and the process of curcumin induced muscle destruction or rupture in zebrafish embryos.................................................. 22
The curcumin- induced tail damage started from the tail and led to myopathy at different developmental stage.................................................... 22
The mechanism and progress in curcumin- induced myopathy zebrafish embryos. ...................................... 23
Inhibitors creening of curcumin- induced myopathy in zebrafish................................................ 25
Discussion .............................................. 26
References .............................................. 33
Figures ................................................. 40
Tables................................................... 56


Aggarwal, B. B., Kumar, A. and Bharti, A. C. (2003). Anticancer potential of curcumin: preclinical and clinical studies. Anticancer research 23, 363-398.
Aguib, Y., Heiseke, A., Gilch, S., Riemer, C., Baier, M., Schatzl, H. M. and Ertmer, A. (2009). Autophagy induction by trehalose counteracts cellular prion infection. Autophagy 5, 361-369.
Balasubramanian, S., Ramos, J., Luo, W., Sirisawad, M., Verner, E. and Buggy, J. J. (2008). A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia 22, 1026-1034.
Bali, P., Pranpat, M., Bradner, J., Balasis, M., Fiskus, W., Guo, F., Rocha, K., Kumaraswamy, S., Boyapalle, S., Atadja, P., et al. (2005). Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. The Journal of biological chemistry 280, 26729-26734.
Ballou, L. M. and Lin, R. Z. (2008). Rapamycin and mTOR kinase inhibitors. Journal of chemical biology 1, 27-36.
Betz, C. and Hall, M. N. (2013). Where is mTOR and what is it doing there? The Journal of cell biology 203, 563-574.
Blander, G. and Guarente, L. (2004). The Sir2 family of protein deacetylases. Annual review of biochemistry 73, 417-435.
Bolger, T. A. and Yao, T. P. (2005). Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. The Journal of neuroscience : the official journal of the Society for Neuroscience 25, 9544-9553.
Browne, J. A., Dolan, K. M., Tyson, T., Goyal, K., Tunnacliffe, A. and Burnell, A. M. (2004). Dehydration-specific induction of hydrophilic protein genes in the anhydrobiotic nematode Aphelenchus avenae. Eukaryotic cell 3, 966-975.
Castedo, M., Ferri, K. F. and Kroemer, G. (2002). Mammalian target of rapamycin (mTOR): pro- and anti-apoptotic. Cell death and differentiation 9, 99-100.
Chen, C. Q., Yu, K., Yan, Q. X., Xing, C. Y., Chen, Y., Yan, Z., Shi, Y. F., Zhao, K. W. and Gao, S. M. (2013). Pure curcumin increases the expression of SOCS1 and SOCS3 in myeloproliferative neoplasms through suppressing class I histone deacetylases. Carcinogenesis 34, 1442-1449.
Chen, Y., Shu, W. X., Chen, W. H., Wu, Q., Liu, H. L. and Cui, G. H. (2007). Curcumin, both histone deacetylase and p300/CBP-Specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells. Basic Clin Pharmacol 101, 427-433.
Cho, Y. S., Challa, S., Moquin, D., Genga, R., Ray, T. D., Guildford, M. and Chan, F. K. (2009). Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112-1123.
Coles, E. G., Gammill, L. S., Miner, J. H. and Bronner-Fraser, M. (2006). Abnormalities in neural crest cell migration in laminin alpha5 mutant mice. Developmental biology 289, 218-228.
Colognato, H. and Yurchenco, P. D. (2000). Form and function: the laminin family of heterotrimers. Developmental dynamics : an official publication of the American Association of Anatomists 218, 213-234.
Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., Cuny, G. D., Mitchison, T. J., Moskowitz, M. A. and Yuan, J. (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature chemical biology 1, 112-119.
Dokmanovic, M., Clarke, C. and Marks, P. A. (2007). Histone deacetylase inhibitors: overview and perspectives. Molecular cancer research : MCR 5, 981-989.
Eastmond, P. J. and Graham, I. A. (2003). Trehalose metabolism: a regulatory role for trehalose-6-phosphate? Current opinion in plant biology 6, 231-235.
Feoktistova, M. and Leverkus, M. (2015). Programmed necrosis and necroptosis signalling. The FEBS journal 282, 19-31.
Fernandez, G., Spatz, E. S., Jablecki, C. and Phillips, P. S. (2011). Statin myopathy: a common dilemma not reflected in clinical trials. Cleveland Clinic journal of medicine 78, 393-403.
Foglietti, C., Filocamo, G., Cundari, E., De Rinaldis, E., Lahm, A., Cortese, R. and Steinkuhler, C. (2006). Dissecting the biological functions of Drosophila histone deacetylases by RNA interference and transcriptional profiling. The Journal of biological chemistry 281, 17968-17976.
Gabow, P. A., Kaehny, W. D. and Kelleher, S. P. (1982). The spectrum of rhabdomyolysis. Medicine 61, 141-152.
Galluzzi, L., Kepp, O. and Kroemer, G. (2009). RIP kinases initiate programmed necrosis. Journal of molecular cell biology 1, 8-10.
Galluzzi, L., Vanden Berghe, T., Vanlangenakker, N., Buettner, S., Eisenberg, T., Vandenabeele, P., Madeo, F. and Kroemer, G. (2011). Programmed necrosis from molecules to health and disease. International review of cell and molecular biology 289, 1-35.
Garg, A. K., Kim, J. K., Owens, T. G., Ranwala, A. P., Choi, Y. D., Kochian, L. V. and Wu, R. J. (2002). Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proceedings of the National Academy of Sciences of the United States of America 99, 15898-15903.
Glaser, K. B., Li, J., Staver, M. J., Wei, R. Q., Albert, D. H. and Davidsen, S. K. (2003). Role of class I and class II histone deacetylases in carcinoma cells using siRNA. Biochemical and biophysical research communications 310, 529-536.
Grennan, A. K. (2007). The role of trehalose biosynthesis in plants. Plant physiology 144, 3-5.
Hay, N. and Sonenberg, N. (2004). Upstream and downstream of mTOR. Genes & development 18, 1926-1945.
Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., Bodmer, J. L., Schneider, P., Seed, B. and Tschopp, J. (2000). Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1, 489-495.
Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Wang, X. F. and Yao, T. P. (2002). HDAC6 is a microtubule-associated deacetylase. Nature 417, 455-458.
Imre, G., Larisch, S. and Rajalingam, K. (2011). Ripoptosome: a novel IAP-regulated cell death-signalling platform. Journal of molecular cell biology 3, 324-326.
Jackson, C. E. (2008). A clinical approach to muscle diseases. Seminars in neurology 28, 228-240.
Jain, N. K. and Roy, I. (2008). Role of trehalose in moisture-induced aggregation of bovine serum albumin. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 69, 824-834.
---- (2009). Effect of trehalose on protein structure. Protein science : a publication of the Protein Society 18, 24-36.
---- (2010). Trehalose and protein stability. Current protocols in protein science / editorial board, John E. Coligan ... [et al.] Chapter 4, Unit 4 9.
Kang, Y. L., Saleem, M. A., Chan, K. W., Yung, B. Y. and Law, H. K. (2014). Trehalose, an mTOR independent autophagy inducer, alleviates human podocyte injury after puromycin aminonucleoside treatment. PloS one 9, e113520.
Kazantsev, A. G. and Thompson, L. M. (2008). Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nature reviews. Drug discovery 7, 854-868.
Kim, D. H., Sarbassov, D. D., Ali, S. M., King, J. E., Latek, R. R., Erdjument-Bromage, H., Tempst, P. and Sabatini, D. M. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163-175.
Kincaid, J. C. (1997). Muscle pain, fatigue, and fasiculations. Neurologic clinics 15, 697-709.
Krasna, I. H. and Lee, R. T. (1993). Allopurinol protects the bowel from necrosis caused by indomethacin and temporary intestinal ischemia in mice. Journal of pediatric surgery 28, 1175-1177.
Krysko, D. V., Vanden Berghe, T., Parthoens, E., D''Herde, K. and Vandenabeele, P. (2008). Methods for distinguishing apoptotic from necrotic cells and measuring their clearance. Methods in enzymology 442, 307-341.
Langone, P., Debata, P. R., Dolai, S., Curcio, G. M., Inigo Jdel, R., Raja, K. and Banerjee, P. (2012). Coupling to a cancer cell-specific antibody potentiates tumoricidal properties of curcumin. International journal of cancer. Journal international du cancer 131, E569-578.
Laplante, M. and Sabatini, D. M. (2012). mTOR signaling in growth control and disease. Cell 149, 274-293.
Law, B. K. (2005). Rapamycin: an anti-cancer immunosuppressant? Critical reviews in oncology/hematology 56, 47-60.
Liu, H. L., Chen, Y., Cui, C. H. and Zhou, J. F. (2005a). Curcumin, a potent anti-tumor reagent, is a novel histone deacetylase inhibitor regulating B-NHL cell line Raji proliferation. Acta Pharmacol Sin 26, 603-609.
Liu, H. L., Chen, Y., Cui, G. H. and Zhou, J. F. (2005b). Curcumin, a potent anti-tumor reagent, is a novel histone deacetylase inhibitor regulating B-NHL cell line Raji proliferation. Acta pharmacologica Sinica 26, 603-609.
Matsuyama, A., Shimazu, T., Sumida, Y., Saito, A., Yoshimatsu, Y., Seigneurin-Berny, D., Osada, H., Komatsu, Y., Nishino, N., Khochbin, S., et al. (2002). In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. The EMBO journal 21, 6820-6831.
Mills, K. R. and Edwards, R. H. (1983). Investigative strategies for muscle pain. Journal of the neurological sciences 58, 73-78.
Miner, J. H., Cunningham, J. and Sanes, J. R. (1998). Roles for laminin in embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the laminin alpha5 chain. The Journal of cell biology 143, 1713-1723.
Miner, J. H., Li, C., Mudd, J. L., Go, G. and Sutherland, A. E. (2004). Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development 131, 2247-2256.
Miner, J. H., Patton, B. L., Lentz, S. I., Gilbert, D. J., Snider, W. D., Jenkins, N. A., Copeland, N. G. and Sanes, J. R. (1997). The laminin alpha chains: expression, developmental transitions, and chromosomal locations of alpha1-5, identification of heterotrimeric laminins 8-11, and cloning of a novel alpha3 isoform. The Journal of cell biology 137, 685-701.
Oshiro, N., Takahashi, R., Yoshino, K., Tanimura, K., Nakashima, A., Eguchi, S., Miyamoto, T., Hara, K., Takehana, K., Avruch, J., et al. (2007). The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. The Journal of biological chemistry 282, 20329-20339.
Pagnotta, S. E., McLain, S. E., Soper, A. K., Bruni, F. and Ricci, M. A. (2010). Water and trehalose: how much do they interact with each other? The journal of physical chemistry. B 114, 4904-4908.
Paris, M., Porcelloni, M., Binaschi, M. and Fattori, D. (2008). Histone deacetylase inhibitors: from bench to clinic. Journal of medicinal chemistry 51, 1505-1529.
Phillips, B. A. and Mastaglia, F. L. (2000). Exercise therapy in patients with myopathy. Current opinion in neurology 13, 547-552.
Proksch, E., Brandner, J. M. and Jensen, J. M. (2008). The skin: an indispensable barrier. Experimental dermatology 17, 1063-1072.
Proskuryakov, S. Y., Konoplyannikov, A. G. and Gabai, V. L. (2003). Necrosis: a specific form of programmed cell death? Experimental cell research 283, 1-16.
Rao, R. D., Buckner, J. C. and Sarkaria, J. N. (2004). Mammalian target of rapamycin (mTOR) inhibitors as anti-cancer agents. Current cancer drug targets 4, 621-635.
Rispal, D., Eltschinger, S., Stahl, M., Vaga, S., Bodenmiller, B., Abraham, Y., Filipuzzi, I., Movva, N. R., Aebersold, R., Helliwell, S. B., et al. (2015). Target of Rapamycin Complex 2 Regulates Actin Polarization and Endocytosis via Multiple Pathways. The Journal of biological chemistry 290, 14963-14978.
Sarkar, S., Davies, J. E., Huang, Z., Tunnacliffe, A. and Rubinsztein, D. C. (2007). Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. The Journal of biological chemistry 282, 5641-5652.
Sasakawa, Y., Naoe, Y., Sogo, N., Inoue, T., Sasakawa, T., Matsuo, M., Manda, T. and Mutoh, S. (2005). Marker genes to predict sensitivity to FK228, a histone deacetylase inhibitor. Biochemical pharmacology 69, 603-616.
Smyth, N., Vatansever, H. S., Murray, P., Meyer, M., Frie, C., Paulsson, M. and Edgar, D. (1999). Absence of basement membranes after targeting the LAMC1 gene results in embryonic lethality due to failure of endoderm differentiation. The Journal of cell biology 144, 151-160.
Su, X., Wang, H., Kang, D., Zhu, J., Sun, Q., Li, T. and Ding, K. (2015). Necrostatin-1 ameliorates intracerebral hemorrhage-induced brain injury in mice through inhibiting RIP1/RIP3 pathway. Neurochemical research 40, 643-650.
Tanaka, M., Machida, Y., Niu, S., Ikeda, T., Jana, N. R., Doi, H., Kurosawa, M., Nekooki, M. and Nukina, N. (2004). Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nature medicine 10, 148-154.
Tillequin, F. (2009). [Trehala, a meeting point between zoology, botany, chemistry, and biochemistry]. Revue d''histoire de la pharmacie 57, 163-172.
Umekawa, M. and Klionsky, D. J. (2012). Ksp1 kinase regulates autophagy via the target of rapamycin complex 1 (TORC1) pathway. The Journal of biological chemistry 287, 16300-16310.
Vega, R. B., Matsuda, K., Oh, J., Barbosa, A. C., Yang, X., Meadows, E., McAnally, J., Pomajzl, C., Shelton, J. M., Richardson, J. A., et al. (2004). Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119, 555-566.
Vezina, C., Kudelski, A. and Sehgal, S. N. (1975). Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. The Journal of antibiotics 28, 721-726.
Vucic, D., Dixit, V. M. and Wertz, I. E. (2011). Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nature reviews. Molecular cell biology 12, 439-452.
Waltregny, D., Glenisson, W., Tran, S. L., North, B. J., Verdin, E., Colige, A. and Castronovo, V. (2005). Histone deacetylase HDAC8 associates with smooth muscle alpha-actin and is essential for smooth muscle cell contractility. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 19, 966-968.
Ward, M. M. (1988). Factors predictive of acute renal failure in rhabdomyolysis. Archives of internal medicine 148, 1553-1557.
Webb, A. E., Sanderford, J., Frank, D., Talbot, W. S., Driever, W. and Kimelman, D. (2007). Laminin alpha5 is essential for the formation of the zebrafish fins. Developmental biology 311, 369-382.
Wiech, N. L., Fisher, J. F., Helquist, P. and Wiest, O. (2009). Inhibition of histone deacetylases: a pharmacological approach to the treatment of non-cancer disorders. Current topics in medicinal chemistry 9, 257-271.
Wu, J. Y., Lin, C. Y., Lin, T. W., Ken, C. F. and Wen, Y. D. (2007). Curcumin affects development of zebrafish embryo. Biological & pharmaceutical bulletin 30, 1336-1339.
Zhang, X., Chen, S., Song, L., Tang, Y., Shen, Y., Jia, L. and Le, W. (2014). MTOR-independent, autophagic enhancer trehalose prolongs motor neuron survival and ameliorates the autophagic flux defect in a mouse model of amyotrophic lateral sclerosis. Autophagy 10, 588-602.
Zheng, X. X., Shoffner, J. M., Voljavec, A. S. and Wallace, D. C. (1990). Evaluation of procedures for assaying oxidative phosphorylation enzyme activities in mitochondrial myopathy muscle biopsies. Biochimica et biophysica acta 1019, 1-10.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top