跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/28 08:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林大中
研究生(外文):Ta-Chung Lin
論文名稱:利用雙分子螢光互補法研究與 RolB 有交互作用之蛋白
論文名稱(外文):Studies on the interaction proteins of RolB using BiFC
指導教授:李昆達李昆達引用關係
指導教授(外文):Kung-Ta Lee
口試委員:黃鵬林劉啟德靳宗洛楊健志
口試日期:2015-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:46
中文關鍵詞:毛狀根RolBORF13aPHI-2NtbZIPNt14-3-3
外文關鍵詞:hairy rootsRolBORF13aPHI-2NtbZIPNt14-3-3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
RolB對於毛狀根生成具有重要影響,但是目前仍不清楚RolB在植物細胞中的分子作用機制。實驗室先前在酵母菌雙雜合法進行的篩選結果,發現ORF13a、NtbZIP、PHI-2三種蛋白質在酵母菌中與RolB具交互作用。為了在植物細胞內進一步驗證RolB與這三種蛋白質的活體結合,本研究藉由Gateway選殖系統建立雙分子螢光互補法的表現質體,並將質體表現在阿拉伯芥原生質體表現系統中。此外,為了了解本實驗使用的蛋白質各自在細胞中的表現位置,本研究將各蛋白質分別與EYFP結合,並表現在阿拉伯芥原生質體中。實驗結果發現RolB表現在細胞質及細胞核,ORF13a和NtbZIP皆只表現於細胞核,而PHI-2則有可能表現在細胞質及細胞核。雙分子螢光互補法的結果證實,RolB在阿拉伯芥原生質體能分別與ORF13a、PHI-2 和NtbZIP在細胞核中結合。過去文獻曾指出RolB與Nt14-3-3蛋白質具有交互作用,本研究亦使用雙分子螢光互補法驗證這兩種蛋白質之間的結合。結果發現,RolB能與Nt14-3-3於細胞質和細胞核中結合。除此之外,我們還發現Nt14-3-3也能與NtbZIP產生交互作用。根據本研究結果,RolB與ORF13a、NtbZIP、PHI-2以及Nt14-3-3之間的交互作用有可能藉由影響離層酸的訊息傳遞路徑,進而促使毛狀根生長。

RolB is crucial for the formation of hairy roots, but how it works in plant tissue is still unknown. Our previous work found that RolB protein might interact with ORF13a, NtbZIP, and PHI-2 by using yeast two-hybrid assay. In this study, we further confirmed the interactions between RolB and those three proteins in living plant cells. We constructed plasmids for bimolecular fluorescence complementation (BiFC) assay by Gateway cloning system, and applied BiFC assay in Arabidopsis protoplasts. Besides, to figure out the subcellular localization of each protein used in this study, we constructed and expressed EYFP-fusion proteins in Arabidopsis protoplasts. We found RolB was expressed in the nucleus and the cytoplasm, ORF13a as well as NtbZIP were expressed only in the nucleus, and PHI-2 might be expressed both in the cytoplasm and the nucleus. The BiFC assay show that RolB can interact with ORF13a, NtbZIP, and PHI-2 in the nucleus in Arabidopsis protoplasts. We also confirmed the interaction between RolB and Nt14-3-3, which had been reported previously, and found that they can interact in both the cytoplasm and the nucleus in Arabidopsis protoplasts. Moreover, we discovered that Nt14-3-3 can interact with NtbZIP in the nucleus. Our results infer that the protein-protein interactions between RolB, ORF13a, NtbZIP, PHI-2, and Nt14-3-3 might modulate ABA signaling pathway to enhance root growth.

口試委員會審定書
...................................................................................................................................
i
誌謝
...............................................................................................................................................................
ii
中文摘要
....................................................................................................................................................
iii
ABSTRACT
..............................................................................................................................................
iv
CONTENTS
................................................................................................................................................
v
LIST OF FIGURES AND TABLES
.................................................................................................
vii
ABBREVIATIONS
.................................................................................................................................
ix
Chapter 1
Introduction
........................................................................................................................
1
1.1
Hairy root
.................................................................................................................................
1
1.2
Ri plasmids and rol genes
...................................................................................................
2
1.3
Functions of RolB
.................................................................................................................
4
1.4
The interacting proteins of RolB
......................................................................................
5
1.5
Objectives
................................................................................................................................
6
Chapter 2
Materials and Methods
...................................................................................................
8
2.1
Growth condition of plants
................................................................................................
8
2.2
Cloning by Gateway system
..............................................................................................
8
2.3
Arabidopsis protoplasts transient expression assay
.................................................
11
2.4
Confocal microscopy
.........................................................................................................
12
2.5
RNA isolation
.......................................................................................................................
13
Chapter 3
Results
................................................................................................................................
15
3.1
Constructions of new Gateway destination vectors
.................................................
15
3.2
Subcellular localization of RolB, ORF13a, PHI-2, and NtbZIP
.........................
15
3.3
ORF13a, PHI-2 and NtbZIP can interact with RolB
...............................................
16
3.4
Interactions among RolB, NtbZIP and Nt14-3-3
......................................................
17
Chapter 4
Discussion
.........................................................................................................................
18
4.1
The Interaction of RolB with ORF13a
.........................................................................
18
4.2
The interaction of RolB with Nt14-3-3
........................................................................
18
4.3
The interaction of RolB with PHI-2 and NtbZIP
.....................................................
20
Chapter 5
Conclusion
........................................................................................................................
21
Tables
..........................................................................................................................................................
22
Figures
........................................................................................................................................................
24
References
.................................................................................................................................................
38

Altamura, M.M. (2004). Agrobacterium rhizogenes rolB and rolD genes: regulation and involvement in plant development. Plant Cell Tissue Organ Cult 77, 89-101.
Ben-‐Hayyim, G., Martin-‐Tanguy, J., and Tepfer, D. (1996). Changing root and shoot architecture with the rolA gene from Agrobacterium rhizogenes: interactions with gibberellic acid and polyamine metabolism. Physiol Plant 96, 237-243.
Bevan, M.W., and Chilton, M. (1982). T-DNA of the Agrobacterium Ti and Ri plasmids. Ann Rev Genet 16, 357-384.
Birot, A.-M., Bouchez, D., Casse-Delbart, F., Durand-Tardif, M., Jouanin, L., Pautot, V., Robaglia, C., Tepfer, D., Tepfer, M., and Tourneur, J. (1987). Studies and uses of the Ri plasmids of Agrobacterium rhizogenes. Plant Physiol Biochem 25, 323-335.
Blom, N., Gammeltoft, S., and Brunak, S. (1999). Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294, 1351-1362.
Bonhomme, V., Laurain-Mattar, D., and Fliniaux, M.A. (2000). Effects of the rolC gene on hairy root: induction development and tropane alkaloid production by Atropa
belladonna. J Nat Prod 63, 1249-1252.
Boominathan, R., and Doran, P.M. (2003a). Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens.
Biotechnol Bioeng 83, 158-167.
Boominathan, R., and Doran, P.M. (2003b). Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator
plant species. J Biotech 101, 131-146.
Boominathan, R., Saha-Chaudhury, N.M., Sahajwalla, V., and Doran, P.M. (2004). Production of nickel bio-ore from hyperaccumulator plant biomass: applications in phytomining. Biotechnol Bioeng 86, 243-250.
Bulgakov, V.P., Aminin, D.L., Shkryl, Y.N., Gorpenchenko, T.Y., Veremeichik, G.N., Dmitrenok, P.S., and Zhuravlev, Y.N. (2008). Suppression of reactive oxygen species and enhanced stress tolerance in Rubia cordifolia cells expressing the rolC oncogene. Mol Plant Microbe Interact 21, 1561-1570.
Casanova, E., Valdes, A.E., Zuker, A., Fernandez, B., Vainstein, A., Trillas, M.I., and Moysset, L. (2004). rolC-transgenic carnation plants: adventitious organogenesis and levels of endogenous auxin and cytokinins. Plant Sci 167, 551-560.
Casanova, E., Zuker, A., Trillas, M.I., Moysset, L., and Vainstein, A. (2003). The rolC gene in carnation exhibits cytokinin- and auxin-like activities. Sci Hortic (Amsterdam) 97, 321-331.
Chandra, S. (2012). Natural plant genetic engineer Agrobacterium rhizogenes: role of TDNA in plant secondary metabolism. Biotechnol lett 34, 407-415.
Chilton, M.-D., Tepfer, D.A., Petit, A., David, C., Casse-Delbart, F., and Tempé, J. (1982). Agrobacterium rhizogenes inserts T-DNA into the genomes of the host
plant root cells. Nature 295, 432 - 434.
de Boer, A.H., van Kleeff, P.J., and Gao, J. (2013). Plant 14-3-3 proteins as spiders in a web of phosphorylation. Protoplasma 250, 425-440.
Delbarre, A., Muller, P., Imhoff, V., Barbier-Brygoo, H., Maurel, C., Leblanc, N., Perrot-Rechenmann, C., and Guern, J. (1994). The rolB gene of Agrobacterium
rhizogenes does not increase the auxin sensitivity of tobacco protoplasts by modifying the intracellular auxin concentration. Plant Physiol 105, 563-569.
Denison, F.C., Paul, A.-L., Zupanska, A.K., and Ferl, R.J. (2011). 14-3-3 proteins in plant physiology. Semin Cell Dev Biol 22, 720-727.
Dubrovina, A.S., Manyakhin, A.Y., Zhuravlev, Y.N., and Kiselev, K.V. (2010). Resveratrol content and expression of phenylalanine ammonia-lyase and stilbene
synthase genes in rolC transgenic cell cultures of Vitis amurensis. Appl Microbiol Biotechnol 88, 727-736.
Eapen, S., Suseelan, K., Tivarekar, S., Kotwal, S., and Mitra, R. (2003). Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and
Chenopodium amaranticolor. Enviro Res 91, 127-133.
Earley, K.W., Haag, J.R., Pontes, O., Opper, K., Juehne, T., Song, K., and Pikaard, C.S. (2006). Gateway-‐compatible vectors for plant functional genomics and proteomics. Plant J 45, 616-629.
Estruch, J.J., Chriqui, D., Grossmann, K., Schell, J., and Spena, A. (1991a). The plant oncogene rolC is responsible for the release of cytokinins from glucoside
conjugates. EMBO J 10, 2889-2895.
Estruch, J.J., Schell, J., and Spena, A. (1991b). The protein encoded by the rolB plant oncogene hydrolyses indole glucosides. EMBO J 10, 3125-3128.
Filippini, F., Rossi, V., Marin, O., Trovato, M., Costantino, P., Downey, P.M., Lo, S.F., and Terzi, M. (1996). A plant oncogene as a phosphatase. Nature 379, 499-500.
Flores, H.E., and Filner, P. (1985). Metabolic relationships of putrescine, GABA and alkaloids in cell and root cultures of Solanaceae. In Primary and Secondary
Metabolism of Plant Cell Cultures, K.-H. Neumann, W. Barz, and E. Reinhard, eds. (Springer Berlin Heidelberg), pp. 174-185.
Gehl, C., Waadt, R., Kudla, J., Mendel, R.-R., and Hänsch, R. (2009). New GATEWAY vectors for high throughput analyses of protein–protein interactions by bimolecular fluorescence complementation. Mol Plant 2, 1051-1058.
Gorpenchenko, T.Y., Kiselev, K.V., Bulgakov, V.P., Tchernoded, G.K., Bragina, E.A., Khodakovskaya, M.V., Koren, O.G., Batygina, T.B., and Zhuravlev, Y.N. (2006).
The Agrobacterium rhizogenes rolC-gene-induced somatic embryogenesis and shoot organogenesis in Panax ginseng transformed calluses. Planta 223, 457-467.
Guillon, S., Tremouillaux-Guiller, J., Pati, P.K., ideau, M., and Gantet, P. (2006). Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9,
341-346.
Hansen, G., Vaubert, D., Clérot, D., Tempe, J., and Brevet, J. (1994). A new open reading frame, encoding a putative regulatory protein, in Agrobacterium rhizogenes T-DNA. C R Acad Sci III 317, 49-53.
Kiselev, K., Dubrovina, A., Veselova, M., Bulgakov, V., Fedoreyev, S., and Zhuravlev, Y.N. (2007). The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. J Biotech 128, 681-692.
Kurioka, Y., Suzuki, Y., Kamada, H., and Harada, H. (1992). Promotion of flowering and morphological alterations in Atropa belladonna transformed with a CaMV
35S-rolC chimeric gene of the Ri plasmid. Plant Cell Rep 12, 1-6.
Le Flem-Bonhomme, V., Laurain-Mattar, D., and Fliniaux, M. (2004). Hairy root induction of Papaver somniferum var. album, a difficult-to-transform plant, by A. rhizogenes LBA 9402. Planta 218, 890-893.
Lemcke, K., and Schmulling, T. (1998). A putative rolB gene homologue of the Agrobacterium rhizogenes TR-DNA has different morphogenetic activity in tobacco than rolB. Plant Mol Biol 36, 803-808.
Lin, H.-w., Kwok, K.H., and Doran, P.M. (2003). Development of Linum flavum hairy root cultures for production of coniferin. Biotechnol lett 25, 521-525.
Lozano-Durán, R., and Robatzek, S. (2015). 14-3-3 proteins in plant-pathogen interactions. Mol Plant Microbe Interact 28, 511-518.
Maurel, C., Barbier-Brygoo, H., Spena, A., Tempé, J., and Guern, J. (1991). Single rol genes from the Agrobacterium rhizogenes TL-DNA alter some of the cellular responses to auxin in Nicotiana tabacum. Plant Physiol 97, 212-216.
Maurel, C., Brevet, J., Barbier-Brygoo, H., Guern, J., and Tempe, J. (1990). Auxin regulates the promoter of the root-inducing rolB gene of Agrobacterium rhizogenes in transgenic tobacco. Mol Gen Genet 223, 58-64.
Maurel, C., Leblanc, N., Barbier-Brygoo, H., Perrot-Rechenmann, C., Bouvier-Durand, M., and Guern, J. (1994). Alterations of auxin perception in rolB-transformed
tobacco protoplasts. Time course of rolB mRNA expression and increase in auxin sensitivity reveal multiple control by auxin. Plant Physiol 105, 1209-1215.
Mauro, M.L., Trovato, M., De Paolis, A., Gallelli, A., Costantino, P., and Altamura, M.M. (1996). The plant oncogene rolD stimulates flowering in transgenic tobacco
plants. Dev Bio 180, 693-700.
Moriuchi, H., Okamoto, C., Nishihama, R., Yamashita, I., Machida, Y., and Tanaka, N. (2004). Nuclear localization and interaction of RolB with plant 14-3-3 proteins
correlates with induction of adventitious roots by the oncogene rolB. Plant J 38, 260-275.
Muslin, A.J., Tanner, J.W., Allen, P.M., and Shaw, A.S. (1996). Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84,
889-897.
Nilsson, O., Crozier, A., Schmülling, T., Sandberg, G., and Olsson, O. (1993). Indole‐3‐acetic acid homeostasis in transgenic tobacco plants expressing the Agrobacterium
rhizogenes rolB gene. Plant J 3, 681-689.
Petit, A., David, C., Dahl, G.A., Ellis, J.G., Guyon, P., Casse-Delbart, F., and Tempé, J. (1983). Further extension of the opine concept: plasmids in Agrobacterium
rhizogenes cooperate for opine degradation. Mol Gen Genet 190, 204-214.
Rigden, D., and Carneiro, M. (1999). A structural model for the rolA protein and its interaction with DNA. Proteins 37, 697-708.
Sinkar, V.P., Pythoud, F., White, F.F., Nester, E.W., and Gordon, M.P. (1988). rolA locus of the Ri plasmid directs developmental abnormalities in transgenic tobacco plants.
Genes Dev 2, 688-697.
Spena, A., Schmülling, T., Koncz, C., and Schell, J. (1987). Independent and synergistic activity of rol A, B and C loci in stimulating abnormal growth in plants. EMBO J 6, 3891.
Suzuki, K., Tanaka, K., Yamamoto, S., Kiyokawa, K., Moriguchi, K., and Yoshida, K. (2009). Ti and Ri plasmids. In Microbial Megaplasmids, E. Schwartz, ed.
(Springer), pp. 133-147.
Trovato, M., and Linhares, F. (1999). Recent advances on rol genes research: a tool to study plant differentiation. Curr Top Plant Biol 1, 51-62. Vilaine, F., and Casse-Delbart, F. (1987). Independent induction of transformed roots by the TL and TR regions of the Ri plasmid of agropine type Agrobacterium rhizogenes. Mol Gen Genet 206, 17-23.
Vilaine, F., Rembur, J., Chriqui, D., and Tepfer, M. (1998). Modified development in transgenic tobacco plants expressing a rolA: GUS translational fusion and subcellular localization of the fusion protein. Mol Plant Microbe Interact 11, 855-859.
Wang, J.-H., Lin, H.-H., Liu, C.-T., Lin, T.-C., Liu, L.-y.D., and Lee, K.-T. (2014). Transcriptomic analysis reveals that reactive oxygen species and genes encoding
lipid transfer protein are associated with tobacco hairy root growth and branch development. Mol Plant Microbe Interact 27, 678-687.
White, F.F., Ghidossi, G., Gordon, M.P., and Nester, E.W. (1982). Tumor induction by Agrobacterium rhizogenes involves the transfer of plasmid DNA to the plant genome. Proc Natl Acad Sci U S A 79, 3193-3197.
White, F.F., and Nester, E.W. (1980a). Hairy root: plasmid encodes virulence traits in Agrobacterium rhizogenes. J Bacteriol 141, 1134-1141.
White, F.F., and Nester, E.W. (1980b). Relationship of plasmids responsible for hairy root and crown gall tumorigenicity. Journal Bacteriol 144, 710-720.
White, F.F., Taylor, B.H., Huffman, G.A., Gordon, M.P., and Nester, E.W. (1985). Molecular and genetic analysis of the transferred DNA regions of the root-inducing
plasmid of Agrobacterium rhizogenes. J Bacteriol 164, 33-44.
Würtele, M., Jelich-‐Ottmann, C., Wittinghofer, A., and Oecking, C. (2003). Structural view of a fungal toxin acting on a 14-‐3-‐3 regulatory complex. EMBO J 22, 987-
994.
Yaffe, M.B., Rittinger, K., Volinia, S., Caron, P.R., Aitken, A., Leffers, H., Gamblin, S.J., Smerdon, S.J., and Cantley, L.C. (1997). The structural basis for 14-3-3: phosphopeptide binding specificity. Cell 91, 961-971.
Yi, S. (2014). Interactomic study of Root locus B in tobacco hairy roots. In Department of Biochemical Science and Technology (National Taiwan University), pp. 1-71.
Yoo, S.-D., Cho, Y.-H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2, 1565-
1572.
Zambryski, P., Tempe, J., and Schell, J. (1989). Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids in plants. Cell 56, 193-201.
Zhao, D., Fu, C., Chen, Y., and Ma, F. (2004). Transformation of Saussurea medusa for hairy roots and jaceosidin production. Plant Cell Rep 23, 468-474.
Zhou, M.L., Tang, Y.X., and Wu, Y.M. (2013). Plant hairy roots for remediation of aqueous pollutants. Plant Mol Biol Rep 31, 1-8.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top