跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/28 08:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:范綱祐
研究生(外文):Kang-Yu Fan
論文名稱:藉由比較解剖探討桑科榕屬榕果果壁的防禦功能性特徵
論文名稱(外文):Exploring defensive functional traits of fig walls through comparative anatomy on Ficus (Moraceae)
指導教授:黃玲瓏黃玲瓏引用關係
指導教授(外文):Ling-Long Kuo-Huang
口試委員:曾喜育高文媛何傳愷
口試委員(外文):Hsy-Yu TzengWen-Yuan KaoChuan-Kai Ho
口試日期:2015-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生態學與演化生物學研究所
學門:生命科學學門
學類:生態學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:55
中文關鍵詞:榕樹非授粉蜂榕果果壁防禦性功能特徵比較解剖
外文關鍵詞:Ficusnonpollinating fig waspfig walldefensive functional traitcomparative anatomy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:65
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
非授粉蜂與授粉蜂競爭榕果的資源或以授粉蜂的幼蟲為食,減低授粉蜂與榕樹的適度,因此非授粉蜂對榕樹與授粉蜂的互利共生關係有負面的影響。大部分非授粉蜂在榕果表面探測宿主,接著以產卵管刺穿榕果果壁在榕果內產卵。因此,榕果果壁是抵抗非授粉蜂行外部產卵的第一道防線。然而,前人研究主要探討非授粉蜂對授粉蜂族群的影響,榕果的防禦機制則鮮少被研究。本研究的目的為檢驗台灣各種榕樹榕果果壁的結構,進而探討防禦機制的效用。實驗材料為台灣及蘭嶼採集到的六個亞屬22種榕樹(24個分類單位),藉由組織染色處理埋蠟切片及徒手切片,以分析榕果果壁的組織結構。研究結果顯示有17種的榕果果壁有進一步分化,包含通氣組織(aerenchyma)的形成及厚壁化(sclerification)。依據榕果的果壁結構可將22種榕果分成四型,分別為第一型(無進一步分化)、第二型(具通氣組織)、第三型(厚壁化)以及第四型(具單寧細胞)。此外,雌雄異株的榕樹中,部分種類雌雄果具有相異的果壁結構,雌果為第一型、雄果為第三型;反之,雌雄果果壁結構相同的種類皆為第一型或第二型。其次,以雌雄同株的大葉雀榕、雀榕及正榕進行榕果各發育期的果壁形態比較,結果發現厚壁化的發生時間點皆稍早於類寄生蜂與依附性造癭蜂造訪榕果的時期,且正榕上的單寧細胞自發育早期(A期末)形成後便持續到榕果成熟前(D期)。總結,研究結果顯示榕果可以利用機械性(厚果壁、通氣組織和厚壁化)及化學性防禦(單寧)抵抗非半翅目的植食性昆蟲。趨勢上呈現,雌雄同株具有厚壁化的薄果壁榕果有較多的非授粉蜂種類,例如大葉雀榕、雀榕及正榕;雌雄異株具有通氣組織的厚果壁榕果則有較少的非授粉蜂種類,例如薜荔。本研究可提供一個新的層面以回答:關鍵性特徵是如何在榕果、授粉蜂與非授粉蜂之間共演化。

Nonpollinating fig wasps (NPFWs) compete pollinating fig wasps over the resource provided by figs or feed on pollinating fig wasp larvae. Therefore, they negatively affect the fig-fig wasp mutualism by reducing the fitness of pollinating fig wasps and fig trees. Most of the NPFWs probe on the fig surface and oviposit through the fig wall from the outside of the figs. Thus, the fig wall serves as the first defense structure against the external oviposition by NPFWs. Previous studies mainly explored the effects of NPFWs on pollinating fig wasps. However, few studies investigated the defensive mechanism in figs. Therefore, the first part of this study aims to examine fig wall structure among species in Taiwan and then explores the efficacy of defensive functional traits. To compare the tissue structure of the fig wall on 22 Ficus species (24 taxa) from six subgenera in Taiwan, paraffin and free-hand sections were made and histochemically stained. The results showed that 17 fig walls of the 24 sampled taxa underwent further differentiation, including aerenchyma formation and sclerification. Based on the fig wall structure, four types of fig wall were described as follows: type I (no further differentiation), type II (aerenchyma formation), type III (sclerification), and type IV (tannin deposition). The fig walls of dioecious species either shared similar anatomical traits (type I or II) between female and male figs, or presented different types (e.g. type I in female fig walls and type III in male fig walls). For the second part, fig walls of three monoecious species, Ficus caulocarpa, F. subpisocarpa, and F. microcarpa, with five developmental phases were compared. The results showed that sclerification happened before the visitation by parasitoids and inquilines. In F. microcarpa, tanninferous cells formed at early developmental stage (late A phase) and degraded before ripening (D phase). In conclusion, the mechanical (thick fig wall, aerenchyma formation, and sclerification) defenses deter NPFWs from ovipositing, whereas the chemical defenses (tannin deposition) may target insect non-hymenopteran herbivores. Monoecious figs with sclerified thin fig wall were associated with more NPFW species (e.g. F. caulocarpa, F. microcarpa, and F. subpisocarpa). Dioecious figs with thick type II fig wall were associated with less NPFW species (e.g. F. pumila var. pumila). This study can provide a new aspect to answer how key traits have coevolved among figs, pollinators and NPFWs.

謝 誌 i
摘 要 ii
Abstract iii
Table of contents v
Index of tables vii
Index of figures viii
Introduction 1
Materials and methods 6
Study species 6
Anatomical preparation 7
Histochemical test 8
Imaging procedure 9
Statistical analysis 10
Results 11
General fig wall structure 11
Interspecific comparison 12
Developmental progress of F. caulocarpa, F. subpisocarpa and F. microcarpa 14
Abnormal fig wall structure 16
Discussion 18
Thick fig wall as mechanical defense 19
Aerenchyma as mechanical defense 19
Sclerenchyma as mechanical defense 20
Tanninferous cells as chemical defense 21
Fig wall structure of dioecious species 22
Abnormal fig wall structure 23
Association of defensive functional traits with NPFWs 24
Conclusions 26
Tables and figures 27
References 49


Agrawal, A. A. (1998). Induced responses to herbivory and increased plant performance. Science, 279(5354), 1201-1202.
Agrawal, A. A. (2001). Phenotypic plasticity in the interactions and evolution of species. Science, 294(5541), 321-326.
Anstett, M. C. (2001). Unbeatable strategy, constraint and coevolution, or how to resolve evolutionary conflicts: The case of the fig/wasp mutualism. Oikos, 95(3), 476-484.
Ayres, M. P., Clausen, T. P., MacLean, S. F., Redman, A. M., & Reichardt, P. B. (1997). Diversity of structure and antiherbivore activity in condensed tannins. Ecology, 78(6), 1696-1712.
Bain, A., Tzeng, H. Y., Wu, W. J., & Chou, L. S. (2015). Ficus (Moraceae) and fig wasps (Hymenoptera: Chalcidoidea) in Taiwan. Botanical Studies, 56(1), 11.
Berg, C. C. & Corner E. J. H. (2005). Moraceae (Ficus). In: Nooteboom H. P. (Ed.). Flora Malesiana, Series I - Seed plants (Vol. 17, part 2). Leiden: National Herbarium Nederland.
Berube, D. E. (1978). Larval descriptions and biology of Tephritis dilacerata [Dip.: Tephritidae] , a candidate for the biocontrol of Sonchus arvensis in Canada. Entomophaga. 23(1), 69-82.
Bronstein, J. L. (1988). Predators of fig wasps. Biotropica, 20(3), 215-219.
Bronstein, J. L. (1991). The nonpollinating wasp fauna of Ficus pertusa: exploitation of a mutualism. Oikos, 61, 175-186.
Chen, H. H., Yang, D. R., Gu, D., Compton, S. G., & Peng, Y. Q. (2013). Secondary galling: a novel feeding strategy among ‘non-pollinating’ fig wasps from Ficus curtipes. Ecological Entomology, 38(4), 381-389.
Chen, Y. R. (2001). Population fluctuation and community ecology of Ficus microcarpa L. and its fig wasps. (Doctoral dissertation), National Taiwan University.
Chiu, Y. T. (2012). Phenology and population genetic variation of Ficus pedunculosa var. mearnsii. (Master thesis), National Chung Hsing University.
Coley, P. (1986). Costs and benefits of defense by tannins in a neotropical tree. Oecologia, 70(2), 238-241.
Compton, S. G., & van Noort, S. (1992). Southern African fig wasps (Hymenoptera: Chalcidoidea): resource utilization and host relationships. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, 95(4), 423-435.
Compton, S. G., Rasplus, J. Y., & Ware, A. B. (1994). African fig wasp parasitioid communities: Oxford Science Publications
Compton, S. G., & Robertson, H. G. (1988). Complex interactions between mutualisms: ants tending homopterans protect fig seeds and pollinators. Ecology, 69(4), 1302-1305.
Cook, J. M., & Rasplus, J. Y. (2003). Mutualists with attitude: coevolving fig wasps and figs. Trends in Ecology & Evolution, 18(5), 241-248.
Cruaud, A., Jabbour-Zahab, R., Genson, G., Cruaud, C., Couloux, A., Kjellberg, F., . . . Rasplus, J. Y. (2010). Laying the foundations for a new classification of Agaonidae (Hymenoptera: Chalcidoidea), a multilocus phylogenetic approach. Cladistics, 26(4), 359-387.
Elias, L. G., Menezes Jr., A. O., & Pereira, R. A. S. (2008). Colonization sequence of non-pollinating fig wasps associated with Ficus citrifolia in Brazil. Symbiosis, 45, 107-111.
Feeny, P. (1970). Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by wintr moth caterpillars. Ecology, 51(4), 565-581.
Franceschi, V. R., Krokene, P., Christiansen, E., & Krekling, T. (2005). Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytologist, 167, 353-376.
Galil, J., & Eisikowitch, D. (1968). On the pollination ecology of Ficus sycomorus in East Africa. Ecology, 49(2), 259-269.
Ghara, M., Kundanati, L., & Borges, R. M. (2011). Nature''s swiss army knives: Ovipositor structure mirrors ecology in a multitrophic fig wasp community. PLoS ONE, 6(8), e23642.
Hanley, M. E., Lamont, B. B., Fairbanks, M. M., & Rafferty, C. (2007). Plant structural traits and their role in anti-herbivore defence. Perspectives in Plant Ecology, Evolution and Systematics, 8, 157-178.
Harvell, C. D. (1990). The ecology and evolution of inducible defenses. The Quarterly Review of Biology, 65(3), 323-340.
Heraty, J. M., Burks, R. A., Cruaud, A., Gibson, G. A. P., Liljeblad, J., Munro, J., . . . Yoder, M. (2013). A phylogenetic analysis of the megadiverse Chalcidoidea (Hymenoptera). Cladistics, 29(5), 466-542.
Hill, D. S. (1967). Figs (Ficus spp.) and fig-wasps (Chalcidoidea). Journal of Natural History, 1(3), 413-434.
Imai, K., & Ohsaki, N. (2004). Internal structure of developing aucuba fruit as a defence increasing oviposition costs of its gall midges Asphondylia aucubae. Ecological Entomology, 29(4), 420-428.
Jansen-González, S., Teixeira, S. d. P., Kjellberg, F., & Pereira, R. A. S. (2014). Same but different: Larval development and gall-inducing process of a non-pollinating fig wasp compared to that of pollinating fig-wasps. Acta Oecologica, 57(0), 44-50.
Kerdelhué, C., & Rasplus, J. Y. (1996). Non-pollinating Afrotropical fig wasps affect the fig-pollinator mutualism in Ficus within the subgenus Sycomorus. Oikos, 75(1), 3-14.
Kidd, N. A. C. (1976). Factors influencing leaf vein selection in the lime aphid (Eucallipterus tiliae L.). Oecologia, 23, 247-254.
Lachaise, D., Tsacas, L., & Couturier, G. (1982). The Drosophilidae associated with tropical African figs. Evolution, 36(1), 141-151.
Lopez-Vaamondea, C., Wikströmb, N., Kjerc, K. M., Weiblend, G. D., Raspluse, J. Y., Machadof, C. A., & Cookg, J. M. (2009). Molecular dating and biogeography of fig-pollinating wasps. Molecular Phylogenetics and Evolution, 52(3), 715-726.
Madden, D & Young, T. P. (1992). Symbiotic ants as an alternative defense against giraffe herbivory in spinescent Acacia drepanolobium. Oecologia, 91, 235-238.
Mithofer, A. & Boland, M. (2012). Plant defense against herbivores: chemical aspects. Annual Review of Plant Biology, 63, 431-450.
Peng, Y. Q., Duan, Z. B., Yang, D. R., & Rasplus J. Y. (2008). Co-occurrence of two Eupristina species on Ficus altissima in Xishuangbanna, SW China. Symbiosis, 45, 9-14.
Peng, Y. Q., Zhao, J. B., Harrison, R. D., & Yang, D. R. (2010). Ecology of parasite Sycophilomorpha sp. on Ficus altissima and its effect on the fig-fig wasp mutualism. Parasitology, 137(13), 1913-1919.
Proffit, M., Schatz, B., Bessière, J. M., Chen, C., Soler, C., & Hossaert-McKey, M. (2008). Signalling receptivity: Comparison of the emission of volatile compounds by figs of Ficus hispida before, during and after the phase of receptivity to pollinators. Symbiosis, 45, 15-24
Rnsted, N., Weiblen, G. D., Cook, J. M., Salamin,N., Machado, C. A., & Savolainen1, V. (2005). 60 million years of co-divergence in the fig–wasp symbiosis. Proceedings of the Royal Society B: Biological Sciences, 272, 2593-2599.
Rosumek, F. B., Silveira, F. A. O., Neves, F. S., Barbosa, N. P. U., Diniz, L, Oki, Y., Pezzini, F., Fernandes. G. W., & Cornelissen, T. (2009). Ants on plants: a meta-analysis of the role of ants as plant biotic defenses. Oecologia, 160, 537-549.
Schaffner, J. H. (1937). The Fundamental Nature of the Flower. Bulletin of the Torrey Botanical Club, 64(9), 569-582.
Segar, S. T., Dunn, D. W., Darwell, C. T., & Cook, J. M. (2014). How to be a fig wasp down under: The diversity and structure of an Australian fig wasp community. Acta Oecologica, 57(0), 17-27.
Sivinski, J., & Aluja, M. (2003). The evolution of ovipositor length In the parasitic Hymenoptera and the search for predicability in biological control. Florida Entomologist, 86(2), 143-150.
Sivinski, J., Vulinec, K., & Aluja, M. (2001). Ovipositor length in a guild of parasitoids (Hymenoptera: Braconidae) attacking Anastrepha spp. fruit flies (Diptera: Tephritidae) in southern Mexico. Annals of the Entomological Society of America, 94(6), 886-895.
Su, H. J. (1992). Vegetation of Taiwan: altitudinal vegetation zones and geographical climatic regions. Taipei: Institute of Botany, Academia Sinica Monography.
Tzeng, H. Y. (2004). Taxonomical study of the genus Ficus in Taiwan. (Doctoral dissertation), National Chung Hsing University.
Tzeng, H. Y., Ou, C. H., Lu, F. Y., Bain, A., Chou, L. S., & Kjellberg, F. (2014). The effect of fig wall thickness in Ficus erecta var. beecheyana on parasitism. Acta Oecologica, 57(0), 38-43.
van Loon, J.J. A., de Boer, J. G., & Dicke, M. (2000). Parasitoid-plant mutualism: parasitoid attack of herbivore increases plant reproduction. Entomologia Experimentalis et Applicata, 97(2), 219-227.
van Noort, S., & Compton, S. G. (1996). Convergent evolution of agaonine and sycoecine (Agaonidae, Chalcidoidea) head shape in response to the constraints of host fig morphology. Journal of Biogeography, 23, 415-424.
van Noort, S., Gardiner, A. J., & Tolley, K. A. (2007). New records of Ficus (Moraceae) species emphasize the conservation significance of inselbergs in Mozambique. South African Journal of Botany, 73(4), 642-649.
van Noort, S., Wang, R., & Compton, G. S. (2013). Fig wasps (Hymenoptera Chalcidoidea Agaonidae, Pteromalidae) associated with Asian fig trees (Ficus, Moraceae) in southern Africa Asian followers and African colonists. African Invertebrates, 54, 381-400.
Verkerke, W. (1986). Anatomy of Ficus ottoniifolia (Moraceae) syconia and its role in the fig-fig wasp symbiosis. Proceedings of the Koninklijke Nederlandse Adademie van Wetenschappen, 89(4), 443-469.
Verkerke, W. (1987). Syconial anatomy of Ficus asperifolia (Moraceae), a gynodioecious tropical fig. Proceedings of the Koninklijke Nederlandse Adademie van Wetenschappen, 90(4), 461-492.
Verkerke, W. (1989). Structure and function of the fig. Experientia, 45, 612-621.
Wang, R., Matthews, A., Ratcliffe, J., Barwell, L. J., Peng, Y. Q., Chou, L. S., . . . Compton, S. G. (2014). First record of an apparently rare fig wasp feeding strategy: obligate seed predation. Ecological Entomology, 39, 492-500.
Wang, R., Aylwin, R., Barwell, L., Chen, X. Y., Chen, Y., Chou, L. S., . . . Compton, S. G. (2015). The fig wasp followers and colonists of a widely introduced fig tree, Ficus microcarpa. Insect Conservation and Diversity, 8(4), 322-336.
Weiblen, G. D., & Bush, G. L. (2002). Speciation in fig pollinators and parasites. Molecular Ecology, 11(8), 1573-1578.
West, S. A., Herre, E. A., Windsor, D. M., & Green, P. R. S. (1996). The ecology and evolution of the New World non-pollinating fig wasp communities. Journal of Biogeography, 23, 447-458.
Yafuso, M., Adaniya, S., & Yukawa, J. (2013). Host plant manipulation by fig gall midges (Diptera: Cecidomyiidae) which induce emergence projections on flower galls in the syconia of Ficus microcarpa (Moraceae). Entomological Science, 16(4), 413-420.
Zhen, W. Q., Huang, D. W., Xiao, J. H., Yang, D. R., Zhu, C. D., & Xiao, H. (2005). Ovipositor length of three Apocrypta species: Effect on oviposition behavior and correlation with syconial thickness. Phytoparasitica, 33(2), 113-120.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文