跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/23 16:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何念青
研究生(外文):Nien-Ching Ho
論文名稱:以近場影像與電腦斷層掃描提升剪切波彈性影像解析度之研究
論文名稱(外文):Improving Resolution of Shear Wave Elasticity Imaging –Near Field Imaging and Shear Wave Computed Tomography
指導教授:李百祺
口試委員:郭柏齡周呈霙沈哲州鄭耿璽
口試日期:2015-08-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生醫電子與資訊學研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:62
中文關鍵詞:高頻超音波剪切波彈性影像
外文關鍵詞:high frequency ultrasoundshear waveelasticity imaging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高頻超音波系統,相較於目前大部分超音波系統,能提供較高的空間解析度,亦能偵測到較小的剪切波位移,特別適合用於臨床前小動物實驗或三維細胞培養觀測上。在之前的研究中,我們成功地將剪切波彈性影像架設於此系統上。本研究則是進一步修改先前的架構,改為接收近場的剪切波,以提高剪切波彈性影像的解析度及增加其準確性。接著嘗試結合近場剪切波彈性影像及電腦斷層掃描,希望能進一步獲得待測物各個角度的資訊,及更加提升影像的解析度。大部分的剪切波彈性影像都是藉由計算剪切波於組織中的傳播速度以求得彈性,然而剪切波會隨著傳遞的距離衰減甚至變形,因此遠離剪切波產生位置的速度計算結果便會因為訊雜比的降低而較不準確。因此,我們提出近場剪切波彈性影像的方法,希望藉由量測近場的剪切波,減少傳統方法中剪切波可能在傳遞過程中大幅衰減且變形的影響,來增加剪切波彈性影像的準確性及提高解析度。在仿體的實驗結果中,Contrast-to-noise ratio由先前架構的1.45,在近場架構中提升至2.00;硬塊仿體計算出的速度偏差也由先前架構-19.04%降低至近場架構的1.44%,可見近場剪切波彈性影像確實能有效提高硬塊與背景的對比以及數值的正確性。在活體實驗中,亦可以更有效觀察到腫瘤的位置和速度變化。在近場剪切波彈性影像的基礎下,我們提出了剪切波彈性影像電腦斷層攝影。在現有的超音波電腦斷層攝影中,可以重建出整個掃描範圍內聲波的速度分布。我們希望用類似的方式,但將原本計算聲波的速度改為計算剪切波的速度,以現有的剪切波彈性影像系統,重新設計掃描的方式,藉由許多次不同角度、位置的發射及接收資訊,以time-of-flight的方式得到剪切波的到達時間,再搭配既有的電腦斷層攝影重建方法,來算出整個掃描範圍內的剪切波速度分布,也就相當於彈性分布。斷層掃描方法目前重建結果仍有顯著的誤差,其可能的原因在本論文中亦有討論。

High frequency ultrasound imaging, which provides higher spatial resolution and better sensitivity for detecting shear wave displacement, is suitable for pre-clinical small animal and 3-D cell culture system studies. In our previous study, we have implemented shear wave elasticity imaging (SWEI) on our high frequency single element system. However, due to attenuation and diffraction, the signal-to-noise ratio (SNR) and estimation accuracy decrease with distance. The measured speed map tends to be incorrect for large region of interest (ROI). In this research, we hypothesize that by adopting near field SWEI (i.e., push transducer and image transducer are kept close to each other) SWEI resolution and accuracy can be improved. Furthermore, we try to combine the near field SWEI and computed tomography, hoping to have an even higher resolution. Our results show that in phantom experiments, the contrast-to-noise ratio is 1.45 for the previous setup, and 2.00 for the near field setup; the shear wave velocity bias of inclusion is -19.04% for the previous setup, and 1.44% for the near field setup. We were also able to obtain a 2D elasticity map of a mouse tumor with better agreement with B-mode morphology compared to the conventional setup. Finally, large errors exist in the results from shear wave computed tomography. Possible sources of errors are discussed.

致謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST of FIGURES vii
LIST of TABLES xi
第一章 緒論 1
1.1 彈性影像簡介 1
1.2 臨床超音波 11
1.3 臨床前研究 11
1.4 三維細胞培養系統 12
1.5 近場的概念 12
1.6 研究目標 13
第二章 高頻超音波系統上之彈性影像實作 14
2.1 高頻超音波簡介 14
2.2 高頻超音波系統架構 14
2.3 彈性影像成像步驟 16
2.3.1 外加作用力 16
2.3.2 位移量測 17
2.3.3 彈性影像重建 18
2.4 彈性影像解析度 21
2.5 彈性影像系統設計 22
2.5.1 簡介 22
2.5.2 系統同步時序設計 23
2.5.3 共焦平面探頭組合設計 25
第三章 近場剪切波彈性影像架構 26
3.1 實驗動機 26
3.2 實驗架構 30
3.3 剪切波速度計算 31
3.4 實驗結果與討論 33
3.4.1 硬塊仿體 33
3.4.2 豬肝實驗 (ex vivo) 35
3.4.3 老鼠肝臟實驗 (in vivo) 37
3.4.4 討論 39
第四章 剪切波彈性影像電腦斷層攝影 41
4.1 簡介 41
4.2 實驗架構 41
4.3 重建方法 43
4.4 實驗結果 45
4.5 模擬結果 48
4.5.1 隨機雜訊 49
4.5.2 角度誤差 51
4.5.3 剪切波波束寬度造成誤差 54
4.5.4 長度誤差 55
4.6 討論 56
第五章 結論與未來工作 57
5.1 結論 57
5.2 未來工作 57
參考文獻 59


[1]J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, "Elastography: a quantitative method for imaging the elasticity of biological tissues," Ultrason Imaging, vol. 13, pp. 111-34, Apr 1991.
[2]A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, "Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics," Ultrasound Med Biol, vol. 24, pp. 1419-35, Nov 1998.
[3]L. Sandrin, M. Tanter, S. Catheline, and M. Fink, "Shear modulus imaging with 2-D transient elastography," IEEE Trans UltrasonFerroelectrFreq Control, vol. 49, pp. 426-35, Apr 2002.
[4]L. Sandrin, M. Tanter, J. L. Gennisson, S. Catheline, and M. Fink, "Shear elasticity probe for soft tissues with 1-D transient elastography," IEEE Trans UltrasonFerroelectrFreq Control, vol. 49, pp. 436-46, Apr 2002.
[5]J. Bercoff, M. Tanter, and M. Fink, "Supersonic shear imaging: a new technique for soft tissue elasticity mapping," IEEE Trans UltrasonFerroelectrFreq Control, vol. 51, pp. 396-409, Apr 2004.
[6]E. Mace, I. Cohen, G. Montaldo, R. Miles, M. Fink, and M. Tanter, "In vivo mapping of brain elasticity in small animals using shear wave imaging," IEEE Trans Med Imaging, vol. 30, pp. 550-8, Mar 2011.
[7]T. Deffieux, G. Montaldo, M. Tanter, and M. Fink, "Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity," IEEE Trans Med Imaging, vol. 28, pp. 313-22, Mar 2009.
[8]F. G. Mitri, M. W. Urban, M. Fatemi, and J. F. Greenleaf, "Shear wave dispersion ultrasonic vibrometry for measuring prostate shear stiffness and viscosity: an in vitro pilot study," IEEE Trans Biomed Eng, vol. 58, pp. 235-42, Feb 2011.
[9]K. R. Nightingale, M. L. Palmeri, R. W. Nightingale, and G. E. Trahey, “On the feasibility of remote palpation using acoustic radiation force,” J AcoustSoc Am, vol. 110, no. 1, pp. 625–634, 2001.
[10]M. Tanter, D. Touboul, J. L. Gennisson, J. Bercoff, and M. Fink, "High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging," IEEE Trans Med Imaging, vol. 28, pp. 1881-93, Dec 2009.
[11]H. Zhao, P. Song, M. W. Urban, R. R. Kinnick, M. Yin, J. F. Greenleaf, et al., "Bias observed in time-of-flight shear wave speed measurements using radiation force of a focused ultrasound beam," Ultrasound Med Biol, vol. 37, pp. 1884-92, Nov 2011.
[12]S. Chen, M. Fatemi, and J. F. Greenleaf, "Quantifying elasticity and viscosity from measurement of shear wave speed dispersion," J AcoustSoc Am, vol. 115, pp. 2781-5, Jun 2004.
[13]Y. Zheng, S. Chen, W. Tan, R. Kinnick, and J. F. Greenleaf, "Detection of tissue harmonic motion induced by ultrasonic radiation force using pulse-echo ultrasound and Kalman filter," IEEE Trans UltrasonFerroelectrFreq Control, vol. 54, pp. 290-300, Feb 2007.
[14]Y. Zhou, L. Zhai, R. Simmons, and P. Zhong, "Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone," J AcoustSoc Am, vol. 120, pp. 676-85, Aug 2006.
[15]J. Bercoff, M. Tanter, M. Muller, and M. Fink, "The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force," IEEE Trans UltrasonFerroelectrFreq Control, vol. 51, pp. 1523-36, Nov 2004.
[16]S. Chen, M. W. Urban, C. Pislaru, R. Kinnick, Y. Zheng, A. Yao, et al., "Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity," IEEE Trans UltrasonFerroelectrFreq Control, vol. 56, pp. 55-62, Jan 2009.
[17]C. Amador, M. W. Urban, S. Chen, Q. Chen, K. N. An, and J. F. Greenleaf, "Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms," IEEE Trans Biomed Eng, vol. 58, pp. 1706-14, Jun 2011.
[18]C. Amador, M. W. Urban, S. Chen, and J. F. Greenleaf, "Shear wave dispersion ultrasound vibrometry (SDUV) on swine kidney," IEEE Trans UltrasonFerroelectrFreq Control, vol. 58, pp. 2608-19, Dec 2011.
[19] M. Orescanin, M. A. Qayyum, K. S. Toohey, M. F. Insana, "Dispersion and shear modulus measurements of porcine liver," Ultrasonic Imaging, vol. 32, no. 4, pp. 255-266, Oct 2010.
[20]M. L. Palmeri, Y. Deng, N. C. Rouze, K. R. Nightingale, "Dependence of shear wave spectral content on acoustic radiation force excitation duration and spatial beamwidth," Ultrasonics Symposium (IUS), 2014 IEEE International, pp. 1105 - 1108, Sep 2014.
[21]P. Song, H. Zhao, A. Manduca, M. W. Urban, J. F. Greenleaf, S. Chen, "Comb-Push Ultrasound Shear Elastography (CUSE): A Novel Method for Two-Dimensional Shear Elasticity Imaging of Soft Tissues," IEEE Trans Med Imaging, vol. 31, pp. 1821-1832, Sep 2012.
[22] E. Betzig, J. K. Trautman, "Near-field optics: Microscopy, spectroscopy, and s urface modification beyond the diffraction limit," Science 257, vol. 257, pp.189-195, July 1992.
[23] T. Deffieux, J. Gennisson, B. Larrat, M. Fink, and M. Tanter, "The Variance of Quantitative Estimates in Shear Wave Imaging: Theory and Experiments," IEEE Trans UltrasonFerroelectrFreq Control, vol. 59, pp. 2390–2410, Dec 2012.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top