跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/23 23:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳巍中
研究生(外文):Wei-Chung Chen
論文名稱:以濺鍍法製備p型氧化銅半導體與電子元件之應用
論文名稱(外文):Sputtering Growth of p-Type CuXO Semiconductors and Their Applications on Electronic Devices
指導教授:吳忠幟
口試委員:蘇國棟陳俐吟蔡志宏謝信弘
口試日期:2014-10-24
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:英文
論文頁數:93
中文關鍵詞:射頻濺鍍技術p型氧化物半導體薄膜電晶體軟性二極體整流器無線射頻辨識系統
外文關鍵詞:RF sputteringp-type oxide semiconductorsthin film transistorsflexible diode rectifiersRFID
相關次數:
  • 被引用被引用:0
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氧化物半導體由於可在低溫製作並成長高品質薄膜,近年來已受到相當的矚目並且迅速的發展。憑藉這些優點且可適用在各式基板上的特性,已被視為下一世代的顯示及軟性電子產品之關鍵材料。雖然n型氧化物半導體上的研究已經相當廣泛,在p型氧化物半導體的探討仍十分需要。因為欲實現高性能的互補式金屬氧化物半導體電路及有機發光二極體驅動電路,p型氧化物半導體則扮演著關鍵性的角色。由目前已發表的文獻可知,氧化銅是p型氧化物半導體中具潛力可以實現高效能p型元件的材料之一,然而其薄膜與元件特性尚無法達實際應用需求,因此氧化銅半導體的薄膜特性與元件製作需要更深入的探討。本論文中首先使用磁控濺鍍技術並搭配氧化銅靶材,在不同的濺鍍功率、濺鍍氣壓及後退火條件下,研究氧化物薄膜的結晶結構、成份、表面粗糙度、化學鍵結與導電特性及p型氧化銅薄膜電晶體特性。接下來並利用p型氧化銅薄膜的濺鍍製程技術,在室溫下成長p型氧化銅薄膜及n型氧化銦鎵鋅薄膜,於軟性塑膠基板上製備p-n 異質接面二極體,最後將此p-n 異質接面二極體成功整合於彎曲情況下仍可正常操作的軟性高頻整流器。



Oxide–semiconductor–based thin films transistors (TFTs), due to their various merits, have attracted much attention and been regarded as a promising next-generation TFT technology for flexible electronics and displays in recent years. In spite of rapid progresses of n-type oxide TFTs, only few p-type oxide-based transistors had been reported so far and their properties and fabrication techniques are still not good enough for practical applications. However, to realize low-power and high-performance complementary TFT circuits or to make the active matrix organic light-emitting diode displays compatible with conventional OLED structures, p-type oxide semiconductors are highly desired. Among all p-type oxides reported, copper oxide (CuXO) is considered one of the most promising candidates for realizing practical p-channel devices. However, the properties of CuXO-based TFTs are not yet good enough for practical applications, necessitating further studies.
In this dissertation, we firstly investigated sputtering deposition of p-type CuXO using the Cu2O target in Ar atmosphere. The effects of the sputtering power, working pressure and annealing processes on compositions, structures, chemical bonding and electrical properties of deposited CuXO films were studied. Results show that polycrystalline and p-type CuO-dominant or Cu2O-dominant films could be readily obtained by carefully controlling the sputtering power, working pressure under post-annealing treatment. p-type CuO TFTs using CuO-dominant films were also demonstrated.
Next, we report successful implementation of room-temperature-processed flexible n-InGaZnO/p-Cu2O heterojunction diodes on polyethylene naphthalate (PEN) plastic substrates using the sputtering technique. Using n-type InGaZnO and p-type Cu2O films deposited by sputtering at room temperature, flexible n-InGaZnO/p-Cu2O heterojunction diodes were successfully fabricated on PEN plastic substrates. The characterization of the frequency response of the room-temperature-processed flexible n-InGaZnO/p-Cu2O heterojunction diode rectifiers indicated that they are sufficient for high-frequency (13.56 MHz) applications. Preliminary bending tests on diode characteristics and rectifier frequency responses indicate their promise for applications in flexible electronics.


誌謝 I
摘要 II
Abstract III
Contents V
List of Figures VII
List of Tables XI
Chapter 1 Introduction 1
1.1 Overview of Metal Oxide Semiconductors and TFTs 1
1.2 p-Type Oxide Semiconductor 3
1.3 Dissertation Organization 5
References 6
Chapter 2 Sputtering Deposition and Characterization of CuXO Films 11
2.1 Introduction 11
2.2 Experiments 13
2.3 Results and Discussion 16
2.3.1 Characteristics of As-deposited CuXO Films 16
2.3.1.1 Effects of Sputtering Power 16
2.3.1.2 Effects of Working Pressure 20
2.3.1.3 Phase Map of As-deposited CuXO Films 24
2.3.2 Effects of Post-Annealing on CuXO Films 25
2.3.3 Electrical Properties of CuXO Films 27
2.3.4 p-Type CuXO TFTs 29
2.4 Summary 31
References 32

Chapter 3 Room-Temperature-Processed Flexible n-InGaZnO/p-Cu2O Heterojunction Diodes and High-Frequency Diode Rectifiers 62
3.1 Introduction 62
3.2 Experiments 65
3.2.1 Deposition and Characterization of Thin Films 65
3.2.2 Device Fabrication and Characterization 66
3.2.3 Frequency Response of Diode Rectifiers 67
3.3 Results and Discussion 69
3.3.1 Characteristics of The IGZO and Cu2O Thin Films 69
3.3.2 J–V Characteristics of The n-IGZO/p-Cu2O Diodes 70
3.3.3 Capacitance–Voltage Characteristics of The n-IGZO/p-Cu2O diodes 72
3.3.4 Frequency Response of The Flexible Diode Rectifiers 74
3.4 Summary 76
References 77
Chapter 4 Summary and Future Work 90
4.1 Dissertation Summary 90
4.2 Suggestions for Future Research 92
References 93


Chapter 1
1.H. Hosono, M. Yasukawa, and H. Kawazoe, J. Non-Cryst. Solids 203, 334 (1996).
2.T. Kamiya, K. Nomura and H. Hosono, Sci. Technol. Adv. Mater. 11, 044305 (2010).
3.K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, Nature 432, 488 (2004).
4.H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, Appl. Phys. Lett. 86, 3 (2005).
5.N. L. Dehuff, E. S. Kettenring, D. Hong, H. Q. Chiang, J. F. Wager, R. L. Hoffman, C. H. Park, and D. A. Keszler, J. Appl. Phys. 97, 5 (2005).
6.P. Barquinha, A. Pimentel, A. Marques, L. Pereira, R. Martins, and E. Fortunato, J. Non-Cryst. Solids 352, 1749 (2006).
7.J. Y. Kwon, D. J. Lee, and K. B. Kim, Electron. Mater. Lett. 7, 1( 2011).
8.Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Kimura, M. Hirano and H. Hosono, Phys. Status Solidi A 206, 2187 (2009).
9.Xiao Zou, G. Fang, L. Yuan, M. Li, W. Guan, and X. Zhao, IEEE Electron Dev. Lett. 31, 827 (2010).
10.E. Fortunato, V. Figueiredo, P. Barquinha, E. Elamurugu, R. Barros, G. Gonçalves, S.-H. K. Park, C.-S. Hwang, and R. Martins, Appl. Phys. Lett. 96, 192102 (2010).
11.J. Ghijsen, L. H. Tjeng, J. van Elp, and H. Eskes,Phys. Rev. B 38, 11322 (1988).
12.M. A. Rafea, N. Roushdy, J. Phys. D-Appl. Phys. 42, 6 (2009).
13.D. Scanlon, B. Morgan, G. Watson, and A. Walsh, Phys. Rev. Lett. 103, 096405 (2009).
14.H. Raebiger, S. Lany and A. Zunger, Phys. Rev. B 76, 045209 (2007).
15.B. S. Li, K. Akimoto, and A. Shen, J. Cryst. Growth 311, 1102 (2009 ).
16.K. Matsuzaki, K. Nomura , H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett. 93, 202107 (2008).
17.B. Li, J. Crystal Growth 311, 1102 (2009).
18.K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett. 93, 202107 (2008).
19.E. Fortunato, V. Figueiredo, P. Barquinha, E. Elamurugu, R. Barros, G. a. Gonçalves, S.-H. K. Park, C.-S. Hwang, and R. Martins, Appl. Phys. Lett. 96, 239902 (2010).
20.V. Figueiredo, E. Elangovan, R. Barros, J. Pinto, T. Busani, R. Martins, and E. Fortunato, J. Disp. Technol. 8, 41 (2012).

Chapter 2
1.K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).
2.T. Kamiya, K. Nomura and H. Hosono, J. Disp. Technol. 5, 16 (2009).
3.E. Fortunato, P. Barquinha and R. Martins, Adv. Mater. 24, 2945 (2012).
4.A. Kudo, H. Yanagi, H. Hosono, and H. Kawazoe, Appl. Phys. Lett. 73, 220 (1998).
5.A. O. Musa, T. Akomolafe, and M. J. Carter, Sol. Energ. Mat. Sol. C 51, 305 (1998).
6.X. Q. Pan and L. Fu, J. Electroceram. 7, 35 (2001).
7.P. C. Chang, Z. Y. Fan, W. Y. Tseng, A. Rajagopal, and J. G. Lu, Appl. Phys. Lett. 87, 222102 (2005).
8.H. Shimotani, H. Suzuki, K. Ueno, M. Kawasak,i and Y. Iwasa, Appl. Phys. Lett. 92, 242107 (2008).
9.K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett. 93, 202107 (2008).
10.Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett. 93, 032113 (2008).
11.J. Ghijsen, L. H. Tjeng, J. van Elp, and H. Eskes,Phys. Rev. B 38, 11322 (1988).
12.M. A. Rafea, N. Roushdy, J. Phys. D-Appl. Phys. 42, 6 (2009).
13.D. Scanlon, B. Morgan, G. Watson, and A. Walsh, Phys. Rev. Lett. 103, 096405 (2009).
14.H. Raebiger, S. Lany and A. Zunger, Phys. Rev. B 76, 045209 (2007).
15.Xiao Zou, G. Fang, L. Yuan, M. Li, W. Guan, and X. Zhao, IEEE Electron Dev. Lett. 31, 827 (2010).
16.E. Fortunato, V. Figueiredo, P. Barquinha, E. Elamurugu, R. Barros, G. Gonçalves, S.-H. K. Park, C.-S. Hwang, and R. Martins, Appl. Phys. Lett. 96, 192102 (2010).
17.E. Fortunato, V. Figueiredo, P. Barquinha, E. Elamurugu, R. Barros, G. a. Gonçalves, S.-H. K. Park, C.-S. Hwang, and R. Martins, Appl. Phys. Lett. 96, 239902 (2010).
18.V. Figueiredo, E. Elangovan, R. Barros, J. Pinto, T. Busani, R. Martins, and E. Fortunato, J. Disp. Technol. 8, 41 (2012).
19.P. C. Hsu, W. C. Chen, Y. T. Tsai, Y. C. Kung, C. H. Chang, C. J. Hsu, C. C. Wu, and H. H. Hsieh, Jpn. J. Appl. Phys. 52, 05DC07 (2013).
20.E. Aperathitis, Z. Hatzopoulos, M. Androulidaki, V. Foukaraki, A. Kondilis, C. G. Scott, D. Sands, and P. Panayotatos, Sol. Energy Mater. Sol. Cells 45, 161 (1997).
21.J. A. Thornton, J. Vac. Sci. Technol. 11, 666 (1974)
22.R. Messier and S. Trolier-McKinstry, Encyclopedia of materials: Science and technology, Elsevier, (2001)
23.S.Y. Sung, S.Y. Kim, K.M. Jo, J.H. Lee, J.J. Kim, S.G. Kim, K.H. Chai, S.J. Pearton, D.P. Norton, and Y.W. Heo, Appl. Phys. Lett. 97, 222109 (2010).
24.L.D.L.S. Valladares, D.H. Salinas, A.B. Dominguez, D.A. Najarro, S.I. Khondaker, T. Mitrelias, C.H.W. Barnes, J.A. Aguiar, and Y. Majima, Thin Solid Films 520, 6368 (2012).
25.S.M. Rossnagel, I. Yang, and J.J. Cuomo, Thin Solid Films 199, 59 (1991).
26.M. Acosta and D. Gonzalez, and I. Riech, Thin Solid Films 517, 5442 (2009).
27.T. V. Pham, M. Rao, P. Andreasson,Y. Peng, J. Wang, and K. B. Jinesh, Appl. Phys. Lett. 102, 032101 (2013).
28.S. Masudy-Panah, G. K. Dalapati, K. Radhakrishnan, A. Kumar, H. R. Tan, E. N. Kumar, C. Vijila, C. C. Tan, and D. Z. Chi, Prog. Photovolt. Res. Appl., (2014)
29.D. B. Granato, J. A. Caraveo-Frescas, H. N. Alshareef, and U. Schwingenschlogl, Appl. Phys. Lett. 102, 212105 (2013)

Chapter 3
1.T.-H. Chuang, H.-H. Hsieh, C.-K. Chen, C.-C. Wu, C.-C. Lin, P.-T. Chou, T.-H. Chao, and T.-J. Chow, Org. Electron. 10, 2869 (2008).
2.C.-K. Chen, H.-H. Hsieh, J.-J. Shyue, and C.-C. Wu, IEEE/OSA J. Disp. Technol. 5, 515 (2009).
3.S.H. Ko, H. Pan, C.P. Grigoropoulos, C.K. Luscombe, J.M.J. Fr’echet, and D. Poulikakos, Nanotechnology 18, 345202 (2007).
4.V. Subramanian, P.C. Chang, J.B. Lee, S.E. Molesa, and S.K. Volkman, IEEE Trans. Compon. Packag. 28, 742 (2005).
5.B. Lee and B. Yu, Microw. Opt. Technol. Lett. 50, 232 (2008).
6.A. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulos, P. Fisher, and M. Soljacic, Science 317, 83 (2007).
7.H. Abe, H. Sakamoto, and K. Harada, IEEE Trans. Industry Appl. 36, 444 (2000).
8.W. C. Brown, IEEE Trans. Microw. Theory Tech. 32, 1230 (1984).
9.T. Sekitani, M. Takamiya, Y. Noguchi, S. Nakano, Y. Kato, T. Sakurai, and T. Someya, Nature Mater. 6, 413 (2007).
10.C.-Y. Lin, C.-H. Tsai, H.-T. Lin, L.-C. Chang, Y.-H. Yeh, Z. Pei, Y.-R. Peng, and C.-C. Wu, Org. Electron. 12, 1777 (2011).
11.B. N. Pal, J. Sun, B. J. Jung, E. Choi, A. G. Andreou, and H. E. Katz, Adv. Mater. 20, 1023 (2008).
12.C. Kang, S. Kim, Y. Hong, and C. Lee, Thin Solid Films 518, 889 (2009).
13.J. Krumm, E. Eckert, W.H. Glauert, A. Ullmann, W. Fix, and W. Clemens, IEEE Electron Dev. Lett. 25, 399 (2004).
14.A. Kudo, H. Yanagi, K. Ueda, H. Hosono, H. Kawazoe, and Y. Yano, Appl. Phys. Lett. 75, 2851 (1999).
15.H. Ohta, M. Hirano, K. Nakahara, H. Maruta, T. Tanabe, M. Kamiya, T. Kamiya, and H. Hosono, Appl. Phys. Lett. 83, 1029 (2003).
16.R. K. Gupta, K. Ghosh, and P. K. Kahol, Physica E 41, 617 (2009).
17.S.Narushima, K. Ueda, H. Mizoguchi, H.Ohta, M. Hirano, K. Shimizu, T. Kamiya, and H. Hosono, Adv. Mater. 15, 1409 (2003).
18.N. Munzenrieder, C. Zysset, L. Petti, T. Kinkeldei, G. A. Salvatore, and G. Troster, Solid-State Electron. 87, 17 (2013).
19.K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).
20.W.-Y. Yang, W.-G. Kim, and S.-W. Rhee, Thin Solid Films 517, 967 (2008).
21.T. Viet Pham, M. Rao, P. Andreasson, Y. Peng, J. Wang, and K. B. Jinesh, Appl. Phys. Lett. 102, 032101 (2013).
22.A.S. Sedra, and K.C. Smith, Microelectronic Circuits, p. 180, Oxford University Press, New York (2004).
23.A. S. Reddy, G. V. Rao, S. Uthanna, and P. S. Reddy, Mater. Lett. 60, 1617 (2006).
24.K. Lee, K. Nomura, H. Yanagi, T. Kamiya, and H. Hosono, Electrochem. Solid-State Lett. 14, H346 (2011).
25.J. M. Shah, Y. L. Li, Th. Gessmann, and E. F. Schubert, J. Appl. Phys. 94, 2627 (2003).
26.SM. Sze, Physics of Semiconductor Devices, p. 124, John Wiley & Sons, New York (1981).
27.M. O''Keeffe, J. Chem. Phys. 39, 1789 (1963).

Chapter 4
1.K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett. 93, 202107 (2008).
2.K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano,and H. Hosono, Phys. Status Solidi A 206, 2192 (2009).
3.X. A. Zou, G. J. Fang, L. Y. Yuan, M. Y. Li, W. J. Guan, and X. Z. Zhao, IEEE Electron Dev. Lett. 31, 827 (2010).





QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top