跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 03:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張然凱
研究生(外文):Jan-Kai Chang
論文名稱:全溶液製程之有機光伏元件:應用石墨烯電極之有機太陽電池及其內部介面電子結構之光譜研究
論文名稱(外文):Toward Fully Solution-Processed Organic Photovoltaics: Spectroscopic Studies on Electronic Structures for Organic Solar Cells with Graphene Electrodes
指導教授:吳志毅
指導教授(外文):Chih-I Wu
口試委員:陳奕君陳美杏張永亭吳肇欣
口試委員(外文):I-Chun Cheng
口試日期:2015-07-24
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:140
中文關鍵詞:太陽電池石墨烯有機半導體
外文關鍵詞:organic solar cellgraphenephotovoltaics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文探討了有機體異質接面太陽電池中能階匹配對其開路電壓之影響與機制,並透過修飾其內部各分界面之性質,減少光生載子於內部傳輸時的能量損耗來提升光電轉換效率,從能量角度歸納出元件構型與材料選用之參考準則,藉此規劃元件結構達到適當之能階匹配,進而不需經由真空製程即可實現高效率之半透明有機太陽電池。
本文首先探討作為太陽電池核心之光敏層其能階對光生激子分離的影響,以摻雜電子施體或受體來改變體異質接面的能階結構,擴大內建電位差達到效率提升之目的;同時分析元件內部於萃取光生載子時所經過之其他接合界面,其能階匹配與能帶組合對該元件效能之影響,並結合光電子能譜與阻抗分析,歸納出利於載子和能量傳輸之能帶組合來減少內部損耗,達到透過能帶工程來優化元件之目的;此外,一套有效調變石墨烯功函數之轉印方法被開發並整合至有機體異質接面太陽電池之製程,驗證電極功函數之改變所產生的界面能障亦會對元件效率產生可觀影響。基於上述實驗與發現,工程上成功地結合了能階調配後的元件結構與石墨烯,有效地將石墨烯薄膜作為透明導電陰極與陽極並成功地轉印至有機物質之上,開發出與傳統元件效率相當之石墨烯有機光伏元件,更進一步地發展出半透明有機太陽電池,達到全溶液製程而不需使用真空系統製備。如此降低時間成本與製程開銷,增添了大面積製備之可能性,更提供了可與建築、外觀整合的嶄新應用,對製作高效率之有機體異質接面太陽電池和其實際應用提供了更多元化的選擇。



Heterostructures based on organic semiconductors are fundamentally different and more flexible than those made from conventional covalently bonded inorganics. In particular, organic bulk heterojunction (BHJ) solar cells have been known for their potential as a time-saving, low-cost and lightweight technology. In this work, the electronic properties of internal junctions including donor-acceptor heterojunction, organic/organic and organic/inorganic junctions at each interface within a BHJ solar cell have been studied in detail via photoemission spectroscopy. Promising ways for performance improvement have been developed based on the incorporation of energy ladder, interfacial modification, as well as forming an energetically favorable band alignment by tuning the work function of electrodes. In addition to investigations from the aspect of electronic structure, loss mechanisms induced by interfacial barrier due to band mismatch have been clarified with better understanding of capacitive response provided by impedance spectroscopy. A facile approach that can transfer high-quality graphene along with effective doping was also established based on aqueous intercalation process, enabling n-doped and p-doped graphene for transparent electrode applications. Accordingly, the incorporation of both graphene anode and graphene cathode was successfully carried out to achieve high-performance organic BHJ solar cells with semi-transparency, showing high compatibility with solution-processed organic optoelectronics. Such proposed scheme benefited the integration of graphene with organic BHJ solar cells, which was further developed into a vacuum-free process for device fabrication. Therefore, the development of fully solution-processed semitransparent device distinguishes organic BHJ solar cells as a feasible green energy source for flexible optoelectronics, wearable battery as well as facade integration.


Contents
中文摘要…………………………………………………………………… I
Abstract…………………………………………………………………… II
Contents…………………………………………………………………… III
List of Figures…………………………………………………………………… V
List of Tables…………………………………………………………………… X

Chapter 1
Introduction…………………………………………………………………… 1
1.1 Organic Bulk Heterojunction (BHJ) Photovoltaics…………………………………………………………………… 1
1.2 Graphene and van der Waals Heterostructure…………………………………………………………………… 12
1.3 Electron Energetics in Surface Analysis…………………………………………………………………… 18
1.4 Limitations and Challenges…………………………………………………………………… 23

Chapter 2
Experimental Setup…………………………………………………………………… 32
2.1 Photoemission Spectroscopy…………………………………………………………………… 32
2.2 Fabrication Process of Organic BHJ Photovoltaics…………………………………………………………………… 41
2.3 Characterization and Measurement…………………………………………………………………… 45

Chapter 3
Engineering Energy Structures of BHJ photoactive Layer……………………………………………………………………51
3.1 Cascade Energy Structure from Ternary Incorporation…………………………………………………………………… 51
3.2 Improved Open-Circuit Voltage in Ternary Blend devices…………………………………………………………………… 56
3.3 Energy Ladders on Bridging Donor-Acceptor Junctions…………………………………………………………………… 60

Chapter 4
Interfacial Band Modification on Cell Performance…………………………………………………………………… 65
4.1 Incorporation of Cathode Connecting Interlayers…………………………………………………………………… 66
4.2 Roles of Interfacial Barrier and Relevant Loss Mechanisms…………………………………………………………………… 70
4.3 Energetically Favorable Alignment on Cell Performance…………………………………………………………………… 74

Chapter 5
Impedance Spectrometry of Organic BHJ Solar cells…………………………………………………………………… 78
5.1 Impedance Spectroscopy and Capacitance Measurement…………………………………………………………………… 79
5.2 Excess Capacitance from Light-Matter Interaction…………………………………………………………………… 82
5.3 Photocurrent Losses and Interfacial Charge Transfer Kinetics…………………………………………………………………… 86

Chapter 6
Tuning Work Function of Electrodes on Carrier Extraction…………………………………………………………………… 90
6.1 Tuning the Work Function of Graphene…………………………………………………………………… 90
6.2 Electronic Structure of Graphene upon Doping…………………………………………………………………… 95
6.3 Graphene Transparent Anodes and Cathodes…………………………………………………………………… 98

Chapter 7
Semitransparent Photovoltaics via Vacuum-Free Process…………………………………………………………………… 104
7.1 Doped Graphene Intercalated Stack for Top Electrode…………………………………………………………………… 105
7.2 Properties of Semitransparent Organic BHJ Photovoltaics…………………………………………………………………… 109
7.3 Optimization towards Fully Solution-Processed device…………………………………………………………………… 114

Chapter 8
Summary and Future Works…………………………………………………………………… 120
8.1 Environmental Aging Effects on Doped Graphene Sheets…………………………………………………………………… 121
8.2 Suggestions for Further Study and Future Research…………………………………………………………………… 126

Reference…………………………………………………………………… 131


[1]Pochettino, Alfred. "Sul comportamento foto-elettrico dell’antracene." Acad. Lincei Rend 15 (1906): 355.
[2]Bube, Richard H. Photoconductivity of Solids. John Wiley & Sons, 1960.
[3]Kallmann, H., and M. Pope. "Photovoltaic effect in organic crystals." The Journal of Chemical Physics 30.2 (1959): 585-586.
[4]LeBlanc Jr, Oliver H. "Electron Drift Mobility in Liquid n‐Hexane." The Journal of Chemical Physics 30.6 (1959): 1443-1447.
[5]Kepler, RoGo. "Charge carrier production and mobility in anthracene crystals." Physical Review 119.4 (1960): 1226.
[6]Mark, Peter, and Wolfgang Helfrich. "Space‐charge‐limited currents in organic crystals." Journal of Applied Physics 33.1 (1962): 205-215.
[7]Hoegl, Helmut. "On Photoelectric Effects in Polymers and Their Sensitization by Dopants1." The Journal of Physical Chemistry 69.3 (1965): 755-766.
[8]Geacintov, Nicholas, Martin Pope, and Harmut Kallmann. "Photogeneration of charge carriers in tetracene." The Journal of chemical physics 45.7 (1966): 2639-2649.
[9]Tang, Ching W. "Organic solar cell." U.S. Patent No. 4,164,431. 14 Aug. 1979.
[10]Tang, Ching W. "Two‐layer organic photovoltaic cell." Applied Physics Letters 48.2 (1986): 183-185.
[11]Sariciftci, N. S., et al. "Photoinduced electron transfer from a conducting polymer to buckminsterfullerene." Science 258.5087 (1992): 1474-1476.
[12]Yu, G., et al. "Polymer Photovoltaic Cells: Enhanced Efficiencies via a device structure consisted of a metal (Ca or Al) contact on the surface of a blend Network of Internal Donor-Acceptor Heterojunctions." Science 270 (1789): 1995.
[13]Yu, G., and Alan J. Heeger. "Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions." Journal of Applied Physics 78.7 (1995): 4510-4515.
[14]Halls, J. J. M., et al. "Efficient photodiodes from interpenetrating polymer networks." Nature 376 (1995): 498.
[15]Spanggaard, Holger, and Frederik C. Krebs. "A brief history of the development of organic and polymeric photovoltaics." Solar Energy Materials and Solar Cells83.2 (2004): 125-146.
[16]Gunes, Serap, Helmut Neugebauer, and Niyazi Serdar Sariciftci. "Conjugated polymer-based organic solar cells." Chemical reviews 107.4 (2007): 1324-1338.
[17]Thompson, Barry C., and Jean MJ Frechet. "Polymer–fullerene composite solar cells." Angewandte chemie international edition 47.1 (2008): 58-77.
[18]Marjanović, N., et al. "Photoresponse of organic field-effect transistors based on conjugated polymer/fullerene blends." Organic electronics 7.4 (2006): 188-194.
[19]Nunzi, Jean-Michel. "Organic photovoltaic materials and devices." Comptes Rendus Physique 3.4 (2002): 523-542.
[20]Hiramoto, Masahiro, Minoru Suezaki, and Masaaki Yokoyama. "Effect of thin gold interstitial-layer on the photovoltaic properties of tandem organic solar cell." Chemistry Letters 3 (1990): 327-330.
[21]Ameri, Tayebeh, et al. "Organic tandem solar cells: a review." Energy & Environmental Science 2.4 (2009): 347-363.
[22]Brabec, Christoph J., et al. "Origin of the open circuit voltage of plastic solar cells." Advanced Functional Materials 11.5 (2001): 374-380.
[23]Connolly, J. S., et al. "Photoinduced Electron Transfer." by MA Fox, M. Chanon, Elsevier (1988): 303.
[24]Yang, Xiaoniu, et al. "Morphology and thermal stability of the active layer in poly (p-phenylenevinylene)/methanofullerene plastic photovoltaic devices." Macromolecules 37.6 (2004): 2151-2158.
[25]Hoppe, Harald, et al. "Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells." Advanced Functional Materials 14.10 (2004): 1005-1011.
[26]Halls, J. J. M., et al. "Exciton diffusion and dissociation in a poly (p‐phenylenevinylene)/C60 heterojunction photovoltaic cell." Applied Physics Letters 68.22 (1996): 3120-3122.
[27]Brabec, Christoph J., et al. "Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time." Chemical Physics Letters 340.3 (2001): 232-236.
[28]Padinger, Franz, Roman S. Rittberger, and Niyazi S. Sariciftci. "Effects of postproduction treatment on plastic solar cells." Advanced Functional Materials13.1 (2003): 85-88.
[29]Li, Gang, et al. "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends." Nature materials 4.11 (2005): 864-868.
[30]He, Youjun, et al. "Indene− C60 bisadduct: a new acceptor for high-performance polymer solar cells." Journal of the American Chemical Society 132.4 (2010): 1377-1382.
[31]Chen, Hsiang-Yu, et al. "Polymer solar cells with enhanced open-circuit voltage and efficiency." Nature Photonics 3.11 (2009): 649-653.
[32]Chang, Jan-Kai, et al. "Bridging donor–acceptor energy offset using organic dopants as energy ladders to improve open-circuit voltages in bulk-heterojunction solar cells." Organic Electronics 15.12 (2014): 3458-3464.
[33]Chi, Dan, et al. "High efficiency P3HT: PCBM solar cells with an inserted PCBM layer." Journal of Materials Chemistry C 2.22 (2014): 4383-4387.
[34]Steim, Roland, F. Rene Kogler, and Christoph J. Brabec. "Interface materials for organic solar cells." Journal of Materials Chemistry 20.13 (2010): 2499-2512.
[35]Peumans, P., V. Bulović, and S. R. Forrest. "Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes." Applied Physics Letters 76.19 (2000): 2650-2652.
[36]Song, Q. L., et al. "Role of buffer in organic solar cells using C60 as an acceptor." Applied physics letters 90.7 (2007): 1109.
[37]Andersen, Philip D., et al. "Investigation of optical spacer layers from solution based precursors for polymer solar cells using X-ray reflectometry." Optical Materials 31.6 (2009): 1007-1012.
[38]Chang, Ching-Chun, et al. "Effects of cathode buffer layers on the efficiency of bulk-heterojunction solar cells." Applied Physics Letters 96.26 (2010): 263506.
[39]Tseng, Wei-Hsuan, et al. "Enhancements in device efficiency of poly (3-hexylthiophene):[6, 6]-phenyl C 61-butyric acid methyl ester based solar cells with incorporation of bathocuproine." Thin Solid Films 520.16 (2012): 5413-5416.
[40]Kwon, Sooncheol, et al. "Synergistic Effect of Processing Additives and Optical Spacers in Bulk‐Heterojunction Solar Cells." Advanced Energy Materials 2.12 (2012): 1420-1424.
[41]Li, G., et al. "Efficient inverted polymer solar cells." Applied Physics Letters 88.25 (2006): 253503-253503.
[42]He, Zhicai, et al. "Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure." Nature Photonics 6.9 (2012): 591-595.
[43]Luque, Antonio, and Steven Hegedus, eds. Handbook of photovoltaic science and engineering. John Wiley & Sons, 2011.
[44]Parker, Ian D. "Carrier tunneling and device characteristics in polymer light‐emitting diodes." Journal of Applied Physics 75.3 (1994): 1656-1666.
[45]Marks, R. N., et al. "The photovoltaic response in poly (p-phenylene vinylene) thin-film devices." Journal of Physics: Condensed Matter 6.7 (1994): 1379.
[46]Brabec, Christoph J., et al. "Origin of the open circuit voltage of plastic solar cells." Advanced Functional Materials 11.5 (2001): 374-380.
[47]Gadisa, Abay, et al. "Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative." Applied Physics Letters 84.9 (2004): 1609-1611.
[48]Scharber, M. C., et al. "Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10% Energy‐Conversion Efficiency." Advanced Materials 18.6 (2006): 789-794.
[49]Rostalski, Jorn, and Dieter Meissner. "Monochromatic versus solar efficiencies of organic solar cells." Solar energy materials and solar cells 61.1 (2000): 87-95.
[50]Mihailetchi, V. D., J. Wildeman, and P. W. M. Blom. "Space-charge limited photocurrent." Physical review letters 94.12 (2005): 126602.
[51]Koster, L. J. A., V. D. Mihailetchi, and P. W. M. Blom. "Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells." Applied physics letters 88.5 (2006): 052104.
[52]Wallace, Philip Richard. "The band theory of graphite." Physical Review 71.9 (1947): 622.
[53]McClure, J. W. "Diamagnetism of graphite." Physical Review 104.3 (1956): 666.
[54]Slonczewski, J. C., and P. R. Weiss. "Band structure of graphite." Physical Review 109.2 (1958): 272.
[55]Peierls, Rudolf. "Quelques proprietes typiques des corps solides." Annales de l''institut Henri Poincare. 5.3 (1935): 177-222.
[56]Landau, L. D. "Zur Theorie der phasenumwandlungen II." Phys. Z. Sowjetunion11 (1937): 26-35.
[57]Novoselov, Kostya S., et al. "Electric field effect in atomically thin carbon films." Science 306.5696 (2004): 666-669.
[58]Novoselov, K. S., et al. "Two-dimensional atomic crystals." Proceedings of the National Academy of Sciences of the United States of America 102.30 (2005): 10451-10453.
[59]Novoselov, K. S. A., et al. "Two-dimensional gas of massless Dirac fermions in graphene." Nature 438.7065 (2005): 197-200.
[60]Zhang, Yuanbo, et al. "Experimental observation of the quantum Hall effect and Berry''s phase in graphene." Nature 438.7065 (2005): 201-204.
[61]Geim, Andre K., and Konstantin S. Novoselov. "The rise of graphene." Nature materials 6.3 (2007): 183-191.
[62]Katsnelson, Mikhail I. "Graphene: carbon in two dimensions." Materials today10.1 (2007): 20-27.
[63]Cooper, Daniel R., et al. "Experimental review of graphene." ISRN Condensed Matter Physics 2012 (2012).
[64]Schedin, F., et al. "Detection of individual gas molecules adsorbed on graphene." Nature materials 6.9 (2007): 652-655.
[65]Gonzalez, J., F. Guinea, and M. A. H. Vozmediano. "Unconventional quasiparticle lifetime in graphite." Physical review letters 77.17 (1996): 3589.
[66]Katsnelson, M. I., K. S. Novoselov, and A. K. Geim. "Chiral tunnelling and the Klein paradox in graphene." Nature physics 2.9 (2006): 620-625.
[67]Tworzydło, Jakub, et al. "Sub-Poissonian shot noise in graphene." Physical Review Letters 96.24 (2006): 246802.
[68]Mayorov, Alexander S., et al. "Micrometer-scale ballistic transport in encapsulated graphene at room temperature." Nano letters 11.6 (2011): 2396-2399.
[69]Lee, Changgu, et al. "Measurement of the elastic properties and intrinsic strength of monolayer graphene." Science 321.5887 (2008): 385-388.
[70]Liu, Fang, Pingbing Ming, and Ju Li. "Ab initio calculation of ideal strength and phonon instability of graphene under tension." Physical Review B 76.6 (2007): 064120.
[71]Bunch, J. Scott, et al. "Impermeable atomic membranes from graphene sheets." Nano letters 8.8 (2008): 2458-2462.
[72]Nair, R. R., et al. "Unimpeded permeation of water through helium-leak–tight graphene-based membranes." Science 335.6067 (2012): 442-444.
[73]Nair, R. R., et al. "Fine structure constant defines visual transparency of graphene." Science 320.5881 (2008): 1308-1308.
[74]Balandin, Alexander A. "Thermal properties of graphene and nanostructured carbon materials." Nature materials 10.8 (2011): 569-581.
[75]Bonaccorso, Francesco, et al. "Graphene photonics and optoelectronics." Nature photonics 4.9 (2010): 611-622.
[76]Novoselov, Konstantin S., et al. "A roadmap for graphene." Nature 490.7419 (2012): 192-200.
[77]Shioyama, H. "Cleavage of graphite to graphene." Journal of materials science letters 20.6 (2001): 499-500.
[78]Viculis, Lisa M., Julia J. Mack, and Richard B. Kaner. "A chemical route to carbon nanoscrolls." Science 299.5611 (2003): 1361-1361.
[79]Stangl, J., V. Holy, and G. Bauer. "Structural properties of self-organized semiconductor nanostructures." Reviews of modern physics 76.3 (2004): 725.
[80]Ohta, Taisuke, et al. "Controlling the electronic structure of bilayer graphene."Science 313.5789 (2006): 951-954.
[81]Virojanadara, Chariya, et al. "Homogeneous large-area graphene layer growth on 6 H-SiC (0001)." Physical Review B 78.24 (2008): 245403.
[82]Kim, Keun Soo, et al. "Large-scale pattern growth of graphene films for stretchable transparent electrodes." Nature 457.7230 (2009): 706-710.
[83]Li, Xuesong, et al. "Large-area synthesis of high-quality and uniform graphene films on copper foils." Science 324.5932 (2009): 1312-1314.
[84]Bae, Sukang, et al. "Roll-to-roll production of 30-inch graphene films for transparent electrodes." Nature nanotechnology 5.8 (2010): 574-578.
[85]Boyd, D. A., et al. "Single-step deposition of high-mobility graphene at reduced temperatures." Nature communications 6 (2015).
[86]Lee, Jae-Hyun, et al. "Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium." Science 344.6181 (2014): 286-289.
[87]Cai, Jinming, et al. "Atomically precise bottom-up fabrication of graphene nanoribbons." Nature 466.7305 (2010): 470-473.
[88]Dhar, S., et al. "A new route to graphene layers by selective laser ablation." AIP Advances 1.2 (2011): 022109.
[89]Lee, Yi‐Hsien, et al. "Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition." Advanced Materials 24.17 (2012): 2320-2325.
[90]Fang, Hui, et al. "High-performance single layered WSe2 p-FETs with chemically doped contacts." Nano letters 12.7 (2012): 3788-3792.
[91]Liu, Han, et al. "Phosphorene: an unexplored 2D semiconductor with a high hole mobility." ACS nano 8.4 (2014): 4033-4041.
[92]Tao, Li, et al. "Silicene field-effect transistors operating at room temperature." Nature nanotechnology 10.3 (2015): 227-231.
[93]Lee, Chul-Ho, et al. "Atomically thin p–n junctions with van der Waals heterointerfaces." Nature nanotechnology (2014).
[94]Furchi, Marco M., et al. "Photovoltaic effect in an electrically tunable van der Waals heterojunction." Nano letters 14.8 (2014): 4785-4791.
[95]Harrison, Walter A. Electronic structure and the properties of solids: the physics of the chemical bond. Courier Corporation, 2012.
[96]Ishii, Hisao, et al. "Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces." Advanced Materials 11.8 (1999): 605-625.
[97]Neto, AH Castro, et al. "The electronic properties of graphene." Reviews of modern physics 81.1 (2009): 109.
[98]Woodruff, David Phillip, and Trevor A. Delchar. Modern techniques of surface science. Cambridge university press, 1994.
[99]Wandelt, K. "The local work function: Concept and implications." Applied surface science 111 (1997): 1-10.
[100]Lin, Wei-Ting, et al. "Organic solar cells comprising multiple-device stacked structures exhibiting complementary absorption behavior." Solar Energy Materials and Solar Cells 120 (2014): 724-727.
[101]Park, Sung Heum, et al. "Bulk heterojunction solar cells with internal quantum efficiency approaching 100&percnt." Nature photonics 3.5 (2009): 297-302.
[102]Chen, Chun‐Chao, et al. "An efficient triple‐junction polymer solar cell having a power conversion efficiency exceeding 11%." Advanced Materials 26.32 (2014): 5670-5677.
[103]Huang, Ye, et al. "Bulk heterojunction solar cells: morphology and performance relationships." Chemical reviews 114.14 (2014): 7006-7043.
[104]Bakulin, Artem A., et al. "The role of driving energy and delocalized states for charge separation in organic semiconductors." Science 335.6074 (2012): 1340-1344.
[105]Drees, Martin, et al. "Stabilization of the nanomorphology of polymer–fullerene “bulk heterojunction” blends using a novel polymerizable fullerene derivative." Journal of Materials Chemistry 15.48 (2005): 5158-5163.
[106]Nierengarten, Jean-Francois, and Sepas Setayesh. "Towards polymerizable fullerene derivatives to stabilize the initially formed phases in bulk-heterojunction solar cells." New journal of chemistry 30.3 (2006): 313-316.
[107]Hauch, Jens A., et al. "Flexible organic P3HT: PCBM bulk-heterojunction modules with more than 1 year outdoor lifetime." Solar Energy Materials and Solar Cells 92.7 (2008): 727-731.
[108]Krebs, Frederik C., et al. "Lifetimes of organic photovoltaics: photochemistry, atmosphere effects and barrier layers in ITO-MEHPPV: PCBM-aluminium devices." Solar Energy Materials and Solar Cells 86.4 (2005): 499-516.
[109]Kim, Hwajeong, et al. "Influence of controlled acidity of hole-collecting buffer layers on the performance and lifetime of polymer: fullerene solar cells." The Journal of Physical Chemistry C 115.27 (2011): 13502-13510.
[110]Gommans, Hans, et al. "On the role of bathocuproine in organic photovoltaic cells." Advanced Functional Materials 18.22 (2008): 3686-3691.
[111]Yang, Xiaoniu, et al. "Nanoscale morphology of high-performance polymer solar cells." Nano letters 5.4 (2005): 579-583.
[112]Wu, Junbo, et al. "Organic light-emitting diodes on solution-processed graphene transparent electrodes." ACS nano 4.1 (2009): 43-48.
[113]Hsu, Chang-Lung, et al. "Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells." Acs nano 6.6 (2012): 5031-5039.
[114]Pirkle, A., et al. "The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2." Applied Physics Letters 99.12 (2011): 122108.
[115]Lee, Yu-Ying, et al. "Top laminated graphene electrode in a semitransparent polymer solar cell by simultaneous thermal annealing/releasing method." ACS nano 5.8 (2011): 6564-6570.
[116]Lin, Wei-Hsiang, et al. "A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate." ACS nano 8.2 (2014): 1784-1791.
[117]Lee, B., et al. "Modification of electronic properties of graphene with self-assembled monolayers." Nano letters 10.7 (2010): 2427-2432.
[118]Shi, Yumeng, et al. "Work function engineering of graphene electrode via chemical doping." ACS nano 4.5 (2010): 2689-2694.
[119]Chang, Yung-Ting, et al. "High-Efficiency Small-Molecule-Based Organic Light Emitting Devices with Solution Processes and Oxadiazole-Based Electron Transport Materials." ACS applied materials & interfaces 5.21 (2013): 10614-10622.
[120]Seah, Martin P., and David Briggs, eds. Practical Surface Analysis: Auger and X-ray Photoelectron Spectroscopy. John Wiley & Sons, 1990.
[121]Sanada, N., et al. "Extremely low sputtering degradation of polytetrafluoroethylene by C60 ion beam applied in XPS analysis." Surface and interface analysis 36.3 (2004): 280-282.
[122]Rollings, E., et al. "Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate." Journal of Physics and Chemistry of Solids 67.9 (2006): 2172-2177.
[123]Wu, C. C., et al. "Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices." Applied Physics Letters 70.11 (1997): 1348-1350.
[124]IEC 904-9: 1995, Photovoltaic devices – Part 9: Solar Simulator Performance Requirements
[125]Becke, Axel D. "Density‐functional thermochemistry. III. The role of exact exchange." The Journal of chemical physics 98.7 (1993): 5648-5652.
[126]Hay, P. Jeffrey, and Willard R. Wadt. "Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals." The Journal of Chemical Physics 82.1 (1985): 299-310.
[127]Leong, Wei Lin, Sarah R. Cowan, and Alan J. Heeger. "Differential Resistance Analysis of Charge Carrier Losses in Organic Bulk Heterojunction Solar Cells: Observing the Transition from Bimolecular to Trap‐Assisted Recombination and Quantifying the Order of Recombination." Advanced Energy Materials 1.4 (2011): 517-522.
[128]Tseng, Wei-Hsuan, et al. "Investigations of efficiency improvements in poly (3-hexylthiophene) based organic solar cells using calcium cathodes." Solar Energy Materials and Solar Cells 95.12 (2011): 3424-3427.
[129]Schilinsky, Pavel, Christoph Waldauf, and Christoph J. Brabec. "Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors."Applied Physics Letters 81.20 (2002): 3885-3887.
[130]Hesse, Holger C., et al. "Perylene sensitization of fullerenes for improved performance in organic photovoltaics." Advanced Energy Materials 1.5 (2011): 861-869.
[131]Alem, Salima, et al. "Effect of mixed solvents on PCDTBT: PC70BM based solar cells." Organic Electronics 12.11 (2011): 1788-1793.
[132]Peet, Jeffery, et al. "Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols." Nature materials 6.7 (2007): 497-500.
[133]Atwater, Harry A., and Albert Polman. "Plasmonics for improved photovoltaic devices." Nature materials 9.3 (2010): 205-213.
[134]Cha, Hyojung, et al. "Complementary Absorbing Star‐Shaped Small Molecules for the Preparation of Ternary Cascade Energy Structures in Organic Photovoltaic Cells." Advanced Functional Materials 23.12 (2013): 1556-1565.
[135]Huang, Jing-Shun, et al. "Polymer bulk heterojunction solar cells employing Forster resonance energy transfer." Nature Photonics 7.6 (2013): 479-485.
[136]Xu, Huajun, et al. "Dye sensitization of polymer/fullerene solar cells incorporating bulky phthalocyanines." Electrochimica Acta 100 (2013): 214-219.
[137]Peumans, Peter, Aharon Yakimov, and Stephen R. Forrest. "Small molecular weight organic thin-film photodetectors and solar cells." Journal of Applied Physics 93.7 (2003): 3693-3723.
[138]Li, Bixin, et al. "The effects of tris(2-phenylpyridine)iridium on the hole injection and transport properties of 4, 4′, 4〃-tri (N-carbazolyl)-triphenylamine thin films." Thin Solid Films 522 (2012): 352-356.
[139]Wetzelaer, G. A. H., et al. "Origin of the dark-current ideality factor in polymer: fullerene bulk heterojunction solar cells." Applied Physics Letters 99.15 (2011): 153506.
[140]Rand, Barry P., Diana P. Burk, and Stephen R. Forrest. "Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells." Physical Review B 75.11 (2007): 115327.
[141]Fitzner, Roland, et al. "Interrelation between Crystal Packing and Small‐Molecule Organic Solar Cell Performance." Advanced Materials 24.5 (2012): 675-680.
[142]Yue, J., and A. J. Epstein. "XPS study of self-doped conducting polyaniline and parent systems." Macromolecules 24.15 (1991): 4441-4445.
[143]Ma, Wanli, et al. "Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology." Advanced Functional Materials 15.10 (2005): 1617-1622.
[144]Presselt, Martin, et al. "Sub-bandgap absorption in polymer-fullerene solar cells studied by temperature-dependent external quantum efficiency and absorption spectroscopy." Chemical Physics Letters 542 (2012): 70-73.
[145]Tseng, Wei-Hsuan, et al. "Metal-induced molecular diffusion in [6, 6]-phenyl-C61-butyric acid methyl ester poly (3-hexylthiophene) based bulk-heterojunction solar cells." Applied Physics Letters 103.18 (2013): 183506.
[146]Kim, Jin Young, et al. "New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer*." Adv. Mater 18 (2006): 572-576.
[147]Gong, Xiong, et al. "Bulk Heterojunction Solar Cells with Large Open‐Circuit Voltage: Electron Transfer with Small Donor‐Acceptor Energy Offset." Advanced Materials 23.20 (2011): 2272-2277.
[148]Bube, R. H., and A. L. Fahrenbruch. "Advances in Electronics and Electron Physics Academic." New York 163 (1981).
[149]Vogel, M., et al. "On the function of a bathocuproine buffer layer in organic photovoltaic cells." Applied Physics Letters 89.16 (2006): 163501-163501.
[150]Kageyama, Hiroshi, et al. "MoO3 as a cathode buffer layer material for the improvement of planar pn-heterojunction organic solar cell performance."Applied physics express 4.3 (2011): 032301.
[151]Peumans, P., and S. R. Forrest. "Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells." Applied Physics Letters 79.1 (2001): 126-128.
[152]Parthasarathy, G., et al. "A metal-free cathode for organic semiconductor devices." Applied Physics Letters 72.17 (1998): 2138-2140.
[153]Boix, Pablo P., et al. "Current‐Voltage Characteristics of Bulk Heterojunction Organic Solar Cells: Connection Between Light and Dark Curves." Advanced Energy Materials 1.6 (2011): 1073-1078.
[154]Guerrero, Antonio, et al. "How the charge-neutrality level of interface states controls energy level alignment in cathode contacts of organic bulk-heterojunction solar cells." ACS nano 6.4 (2012): 3453-3460.
[155]Guerrero, Antonio, et al. "Recombination in organic bulk heterojunction solar cells: small dependence of interfacial charge transfer kinetics on fullerene affinity." The Journal of Physical Chemistry Letters 3.10 (2012): 1386-1392.
[156]Ripolles-Sanchis, Teresa, et al. "Diffusion-Recombination Determines Collected Current and Voltage in Polymer: Fullerene Solar Cells." The Journal of Physical Chemistry C 116.32 (2012): 16925-16933.
[157]Wang, Mingdong, et al. "Limit of Voc in polymeric bulk heterojunction solar cells predicted by a double-junction model." Solar Energy Materials and Solar Cells 108 (2013): 17-21.
[158]Bisquert, Juan, et al. "Band unpinning and photovoltaic model for P3HT: PCBM organic bulk heterojunctions under illumination." Chemical Physics Letters465.1 (2008): 57-62.
[159]Mallajosyula, Arun Tej, S. Sundar Kumar Iyer, and Baquer Mazhari. "Capacitance–voltage characteristics of P3HT: PCBM bulk heterojunction solar cells with ohmic contacts and the impact of single walled carbon nanotubes on them." Organic Electronics 13.7 (2012): 1158-1165.
[160]Donolato, C. "A reciprocity theorem for charge collection." Applied Physics Letters 46.3 (1985): 270-272.
[161]Seo, Jung Hwa, et al. "Electronic properties at gold/conjugated‐polyelectrolyte interfaces." Advanced Materials 21.9 (2009): 1006-1011.
[162]Ratcliff, Erin L., et al. "Energy level alignment in PCDTBT: PC70BM solar cells: solution processed NiOx for improved hole collection and efficiency." Organic Electronics 13.5 (2012): 744-749.
[163]Liu, Zhike, et al. "The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells." ACS nano 6.1 (2011): 810-818.
[164]Liu, Zhike, Jinhua Li, and Feng Yan. "Package‐Free Flexible Organic Solar Cells with Graphene top Electrodes." Advanced Materials 25.31 (2013): 4296-4301.
[165]Wang, Yu, et al. "Interface Engineering of Layer‐by‐Layer Stacked Graphene Anodes for High‐Performance Organic Solar Cells." Advanced Materials 23.13 (2011): 1514-1518.
[166]Zhang, Di, et al. "Al-TiO2 composite-modified single-layer graphene as an efficient transparent cathode for organic solar cells." ACS nano 7.2 (2013): 1740-1747.
[167]Lucchese, Marcia Maria, et al. "Quantifying ion-induced defects and Raman relaxation length in graphene." Carbon 48.5 (2010): 1592-1597.
[168]Basko, D. M., S. Piscanec, and A. C. Ferrari. "Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene." Physical Review B 80.16 (2009): 165413.
[169]Bruna, Matteo, et al. "Doping dependence of the Raman spectrum of defected graphene." ACS nano 8.7 (2014): 7432-7441.
[170]Park, Hyesung, Yumeng Shi, and Jing Kong. "Application of solvent modified PEDOT: PSS to graphene electrodes in organic solar cells." Nanoscale 5.19 (2013): 8934-8939.
[171]Wang, Yu, et al. "Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices." Applied Physics Letters 95.6 (2009): 063302.
[172]Ha, Y‐H., et al. "Towards a Transparent, Highly Conductive Poly (3, 4‐ethylenedioxythiophene)." Advanced Functional Materials 14.6 (2004): 615-622.
[173]Song, Li, et al. "Transfer printing of graphene using gold film." ACS nano 3.6 (2009): 1353-1356.
[174]Seo, Jung-Tak, et al. "Fully Transparent Quantum Dot Light-Emitting Diode Integrated with Graphene Anode and Cathode." ACS nano 8.12 (2014): 12476-12482.
[175]Kroon, Renee, et al. "Small bandgap polymers for organic solar cells (polymer material development in the last 5 years)." Polymer Reviews 48.3 (2008): 531-582.
[176]Kim, Ki Kang, et al. "Fermi level engineering of single-walled carbon nanotubes by AuCl3 doping." Journal of the American Chemical Society 130.38 (2008): 12757-12761.
[177]Li, Xinchen, et al. "Room-temperature solution-processed molybdenum oxide as a hole transport layer with Ag nanoparticles for highly efficient inverted organic solar cells." Journal of Materials Chemistry A 1.22 (2013): 6614-6621.
[178]Steirer, K. Xerxes, et al. "Enhanced efficiency in plastic solar cells via energy matched solution processed NiOx interlayers." Advanced Energy Materials 1.5 (2011): 813-820.
[179]Liu, Xiaodong, Hyunsoo Kim, and L. Jay Guo. "Optimization of thermally reduced graphene oxide for an efficient hole transport layer in polymer solar cells." Organic Electronics 14.2 (2013): 591-598.
[180]Chen, Shanshan, et al. "Oxidation resistance of graphene-coated Cu and Cu/Ni alloy." ACS nano 5.2 (2011): 1321-1327.
[181]Lee, Seunghyun, Kyunghoon Lee, and Zhaohui Zhong. "Wafer scale homogeneous bilayer graphene films by chemical vapor deposition." Nano letters 10.11 (2010): 4702-4707.
[182]Yin, Xiuli, et al. "Evolution of the Raman spectrum of graphene grown on copper upon oxidation of the substrate." Nano Research 7.11 (2014): 1613-1622.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 于漱(1987),台北市20—60歲居民預防性健康行為之調查研究,公共衛生,14(4),391-406。
2. 方進隆(1992),規律運動與健康促進和疾病預防,中華體育季刊,5(4),1-7。
3. 毛祚彥,林貴福(2007),身體活動量、體適能水準與代謝徵候群的關係,中華體育季刊,21(2),33-41。
4. 朱素鑾,卓世鏞(2004),健康動起來:從慢跑開始,大專體育,72,192-199。
5. 朱嘉華,方進隆(1992),國小教師運動習慣對睡眠品質影響之研究,體育學報,26,217-224。
6. 吳益佳,卓俊辰(2005),分散式運動對心肺適能促進效果之探討,大專體育,76,182-188。
7. 吳元暉(2007),運動和高鈣飲食對於兒童骨骼發育的影響,健康世界,257,7。
8. 吳家碧,劉兆達(2007),憂鬱症的運動治療,大專體育,90,170-176。
9. 李佩貞,李麗瓊(2006),規律運動對老年人身心利益之探討,大專體育,83,114-119。
10. 林雅雯,游琇茜,翁政玉,黃于晏,楊琇惠,劉智綱(2003),醫院員工健康促進生活型態及其決定因素之探討—以新竹某區域教學醫院為例,醫務管理期刊,4(4),77-90。
11. 夏淑蓉,盧俊宏(2002),大專網球選手運動動機與運動員身心倦怠之相關研究,大專體育學刊,4(1),145-156。
12. 徐運標(1998),淺談慢跑運動,大專體育,37,83-86。
13. 梁文薔(2006),運動-人人有責,健康世界,252,85-87。
14. 張家銘,黃芳銘(2006),2005 New Balance澎湖國際馬拉松賽會之運動觀光客參與動機之研究,休閒暨觀光產業研究,1(1),34-54。
15. 張孝銘,林樹旺,余國振(2004),慢跑消費者活動參與動機、持續涉入與休閒行為之相關研究,大專體育學刊,6(1),83-93。
 
無相關點閱論文