跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/02 21:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉奇旻
研究生(外文):Chi-Min Liu
論文名稱:旋塗式玻璃微透鏡應用在紫外光發光二極體取光效率提升
論文名稱(外文):Extraction efficiency enhancement in ultra-violet LEDs based on spin on glass microlenses
指導教授:蘇國棟
指導教授(外文):Guo-Dung Su
口試委員:蔡永傑黃鼎偉
口試日期:2015-07-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:77
中文關鍵詞:微透鏡旋塗式玻璃紫外光發光二極體光萃取率多次翻模製程
外文關鍵詞:spin on glassmicrolens arrayultra-violet light emitting diodelight extraction efficiencyreplication process
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中我們提出一個低成本的製程方法將旋塗式玻璃微透鏡製作至紫外光發光二極體上。旋塗式玻璃微透鏡是利用光阻熱處理及多次翻模技術製程,這能有效的降低製程成本。在我們的實驗中,我們製作了不同直徑大小的旋塗式玻璃微透鏡,分別有200, 150, 100及50微米的直徑,並且得到光萃取率提升分別為7.31%, 10.35%, 14.01% 及21.86%。同時,我們也製作了不同形狀的微透鏡,分別有圓形、正方形及六角形,並且得到光萃取率提升分別為7.31%, 9.6%及13.8%。我們利用透鏡圖形的優化,實驗上能有效地將光萃取率提升至21.86%,並且不會破壞任何紫外光發光二極體的電性。

In this paper, we present a cost-effective method to fabricate spin on glass microlens array (SOG MLA) on ultra-violet light emitting diodes (UV LEDs). SOG microlens array was formed by thermal reflow technique and multiple replication processes which can reduce the cost of solution process. In our experiments, we fabricated different diameter size SOG microlens arrays whose diameter of each size was about 200, 150, 100 and 50 μm. The light extraction efficiency is improved by 7.31%, 10.35%, 14.01% and 21.86%, respectively. We also fabricated the different shape SOG microlenses, which was circular, square and hexagonal. The light extraction efficiency is improved by 7.31%, 9.6% and 13.8% for circular, square and hexagonal SOG MLA, respectively. By applying optimized lens pattern, an increase of 21.86% in improved light extraction efficiency is achieved experimentally, without detrimental effect to the electrical performance of the UV LEDs.

目錄
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iii
LIST OF FIGURES vi
LIST OF TABLES vi
Chapter 1 Introduction 1
1.1 Review fabrication of technologies of microlens array 1
1.1.1 Reconfigurable microtemplating 4
1.1.2 Thermal reflow of photoresist [2] 5
1.1.3 Laser beam writing [4] 6
1.1.4 Deep lithography with protons (DLP) [5] 6
1.1.5 Laser ablation [6] 8
1.1.6 Microjet printing process 10
1.2 Ultra-violet Light emitting diodes (UV LEDs) 14
1.2.1 Internal Quantum Efficiency of UV-LED 17
1.2.2 Light Extraction Efficiency of UV-LED 18
Chapter 2 Simulation results 20
2.1 Introduction of simulation 20
2.2 Analysis of different size microlens 22
2.3 Analysis of different shape microlens 26
Chapter 3 Working principle and fabrication process 33
3.1 Thermal reflow 33
3.2 Materials 38
3.2.1 AZ P4620 39
3.2.2 Polydimethylsiloxane 40
3.2.3 Spin on glass [28] 41
3.3 Fabrication process 47
3.3.1 Photoresist microlens array 47
3.3.2 Planar PDMS microlens array 47
3.3.3 Surface treatment 50
3.3.4 SOG microlens array 52
Chapter 4 Experiment results 53
4.1 Characteristic of Spin on glass 53
4.2 Different size SOG microlens 58
4.3 Different shape SOG microlens 60
Chapter 5 Conclusions 72
REFERENCE 73



[1]K. Naessens, H. Ottevaere, R. B H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” Journal of Optics A: Pure and Applied Optics, vol. 8, pp. S407-S429, 2006.
[2]Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Applied Optics, vol. 46, pp. 1281-1284, 1988.
[3]D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Measurement Science and Technology, vol. 1, pp. 759-766, 1990.
[4]T. R. Jay and M. B. Stern, “Preshaping photoresist for refractive microlens fabrication”, Optical Engineering, vol. 33, pp. 3552-3555, 1994.
[5]H. Ottevaere, B. Volckaerts, M. Vervaeke, P. Vynck, A. Hermanne, H. Thienpont, “Plastic microlens arrays by deep lithography with protons: fabrication and characterization,” in Proceedings Symposium IEEE/LEOS Benelux Chapter, pp. 281-284, 2003.
[6]aets, P. V. Daele, and H. Thienpont, “Direct writing of microlenses in polycarbonate with excimer laser ablation,” Applied Optics, vol. 42, pp. 6349-6359, 2003.
[7]D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, ” Microjet fabrication of microlens arrays,” IEEE Photonics Technology Letters, vol. 6, pp. 1112-1114, 1994.
[8]M. B. Stern and T. R. Jay, “Dry etching for coherent refractive microlens arrays,” Optical Engineering, vol. 33, pp. 3547-3551, Nov. 1994.
[9]Kai Wang, et al., "Design of compact freeform lens for application specific light-emitting diode packaging,"OPTICS EXPRESS, Vol.18, No.2, pp. 413-425,18 January 2010
[10]H. P. Le, “Progress and Trends in Ink-jet Printing Technology” Journal of Imaging Science and Technology, vol. 42, 1998.
[11]B.-J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: state of the art and future developments,” Advanced Materials, vol. 16, pp. 203-213, Feb. 2004.
[12]B. J. Kang, C. K. Lee and J. H. Oh, “All-inkjet-printed electrical components and circuit fabrication on a plastic substrate,” Microelectronic Engineering, vol. 97, pp. 251-254, 2012.
[13]P. Calvert, “Inkjet printing for materials and devices,” Chemistry of Materials, vol. 13, pp. 3299-3305, 2001.
[14]H. Sirringhaus, T. Kawase, and R. H. Friend, “High-resolution inkjet printing of all-polymer transistor circuits,” Science, vol. 290, 2123-2126, 2000.
[15]C. N. Hoth, P. Schilinsky, S. A. Choulis, C. J. Brabec., “Printing highly efficient organic solar cell,” Nano Letters, vol.8, pp. 2806-2813, 2008.
[16]C. Altman, “Microlens array fabrication via microjet printing technologies,” altman.casimirinstitute.net, 2007.
[17]J.-P. Lu, W.-K. Huang, F.-C. Chen, “Self-positioning microlens arrays prepared using ink-jet printing,” SPIE, vol. 48, pp. 073606, 2009.
[18]Pen-Ko Chou, Cheng-Yi Liu, “Influence of Current Spreading on Internal Quantum Efficiency in GaN-LED,” Department of Chemical & Materials Engineering National Central University Jhong-Li, Taiwan June, 2008
[19]Shih-Yu Hung, Che-Ping Lin, Hsiharng Yang, Ying-Pin Chang, “Optimal design using thermal reflow and caulking for fabrication of gapless microlens array mold inserts,” Optical Engineering, vol. 46, pp.0091-3286, 2007
[20]Mao-Kuo Wei, I-Lin Su, “Method to evaluate the enhancement of luminance efficiency in planar OLED light emitting devices for microlens array,” Optics Express, vol. 12, pp. 5777-5782, 2004
[21]A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Optical Engineering, vol. 39, pp. 2171-2176, 2000.
[22]P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure and Applied Optics, vol. 6, pp. 617-636, 1997.
[23]F. T. O’Neill and J. T. Sheridan, “Photoresist reflow method of microlens production Part I: Background and experiments,” Optik, vol. 113, pp. 391-404, 2002.
[24]K. A. Heyries and C. L. Hansen, “Parylene C coating for high-performance replica molding,” Lab Chip, vol. 11, pp. 4122-4125, 2011.
[25]M. Zhang, J. Wu, L. Wang, K. Xiao and W. Wen, “A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips,” Lab Chip, vol. 10, pp. 1199-1203, 2010.
[26]J.-K. Chen, F.-H. Ko, K.-F. Hsieh, C.-T. Chou, and F.-C. Chang, “Effect of fluoroalkyl substituents on the reactions of alkylchlorosilanes with mold surfaces for nanoimprint lithography,” J. Vac. Sci. Technol. B, vol. 22, no. 6, pp. 3233-3241, 2004.
[27]H. Peng, Y.-L. Ho, X.-J Yu, M. Wong, and H.-S. Kwok, “Coupling efficiency enhancement in organic light-emitting devices using microlens array-theory and experiment,” Journal of Display Technology, vol. 1, issue 2, pp. 278-, 2005.

[28]Toan Nguyen. Nhu, “Spin-on glass materials and applications in advanced IC technologies,” ISBN: 90-365-12697, pp. 5-14, (1999)
[29]Mao-Kuo Wei, I-Ling Su, Yi-Jia Chen, Ming Chang, Hong-Yi Lin and Tung-Chuan Wu, “The influence of a microlens array on planar organic light-emitting devices,” Journal of Micromechanics and Microengineering, vol. 16, no. 2, pp. 368-374, 2006.
[30]Ken-ichiro Nakamatsu, Makoto Okada, Chiaki Minari, Yoshiyuki Takeuchi, Noriaki Taneichi, Shoji Ohtaka and Shinji Matsui, “Effect of UV Irradiation on Microlens Arrays Fabricated by Room Temperature Nanoimprinting Using Organic Spin-on-Glass,” Applied Physics Express, vol. 1, no. 6, (2008)
[31]Jeong-Keun Ji and Young-Se Kwon, “Conical microlens arrays that flatten optical-irradiance profiles of nonuniform sources,” Applied optics, vol. 34, no. 16, (1994)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top