跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 13:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江宛霖
研究生(外文):Wan-Lin Jiang
論文名稱:以寬頻種子光源做激發拉曼散射增強之研究
論文名稱(外文):The Study of Raman Scattering Enhancement by Broadband Light Source
指導教授:黃升龍
指導教授(外文):Sheng-Lung Huang
口試委員:高甫仁邱政偉羅家堯
口試委員(外文):Fu-Jen KaoJeng-Wei TjiuChia-Yao Lo
口試日期:2015-07-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:99
中文關鍵詞:拉曼光譜學自發拉曼散射激發拉曼散射斯托克散射光摻鈰釔鋁石榴石β胡蘿蔔素神經醯胺
外文關鍵詞:Raman spectroscopyspontaneous Raman scatteringstimulated Raman scatteringStokescerium-doped yttrium aluminum garnetβ-carotenewaterceramide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:81
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
拉曼光譜可以用來取得樣本的定性與定量資訊,其具有不需要樣本製備、不需要染劑標定,也不會受到水分子的影響等優點,在生醫領域上的研究越來越被重視,若此技術能夠結合具有醫學影像形貌上的判定,如光學同調斷層掃描技術,便能夠提供完整的生物樣本資訊。
本論文主要研究分為兩大方向,首先著重在皮膚中三種重要成分,包括β胡蘿蔔素、水與神經醯胺的自發拉曼散射光譜,取其斯托克散射光的部分進行光譜研究。使用低成本、具有連續波特性的雷射二極體作為泵浦光源,然而由於無可避免的會有螢光產生,因此探討各種數值去螢光方法的優劣,個別分析三樣本單獨的拉曼光譜;另外針對β胡蘿蔔素樣本,改變各實驗參數分析其訊噪比;最後取最佳的分段多項式去螢光法,並以數值方式擬合出波包成分,將三種樣本混合的拉曼結果進行分析。
受限於生物分子樣本之無序性,使得一般自發拉曼訊號強度相當微弱,因此本論文使用受激拉曼散射方法欲增強拉曼訊號。在受激拉曼散射方法中需要兩入射光源,分別為泵浦光與種子光,在泵浦光方面,使用了兩不同中心波長做兩組實驗,其為具有低成本、連續波特性的雷射二極體,中心波長為520 nm與638 nm;另外種子光源的部分,使用實驗室自產的Ce3+:YAG晶纖光纖所產生的寬頻光源,取其頻寬接近100 nm、波長由500至600 nm的寬頻特性,能夠涵蓋許多生物樣本各式各樣被泵浦光激發出的斯托克拉曼峰值,用以使訊號有所增益。目前增益並無法由實驗量測得到,因此以數值模擬方式,針對實驗實際情況做出估測僅有不到1%的增益導致難以量測,並分析泵浦光功率、種子光功率、樣本長度與拉曼增益因子對實驗結果的影響與改善,並預測以460-nm LD泵浦光激發β胡蘿蔔素樣本,可使拉曼增益超過10倍之量值。


Raman spectroscopy can be used to obtain the qualitative and quantitative information of samples. And the Raman measurement has the advantages that it does not need samples preparation, no need for staining, and it would not suffer from the impact of water, etc. In the field of biomedical research, Raman spectroscopy increasingly gets more attentions. If this technology can be combined with a 3D medical imaging technology, for instance, optical coherence tomography, more complete information of the biological samples can be obtained.
In this thesis, it is divided into two directions. First of all, we will focus on three important ingredients in the human skin, including β-carotene, water, and ceramide. The Stokes scattering of the spontaneous Raman scattering spectra of these three samples were obtained to study. We use a low cost and continuous-wave laser diode as the pump light source. Because the spectra will inevitably be mixed with fluorescence produced by samples, we tried several methods, and discuss their pros and cons to eliminate the fluorescence. Then choose β-carotene to be the object to analyze the impacts of the results from calculating the signal to noise ratio when changing the experimental parameters. And finally, make use of the best method to eliminate the fluorescence that we have discussed on the Raman spectra of three mixed samples. And numerically fit the wave packet to several Raman peaks.
Due to the amorphous nature of biomolecule samples, the spontaneous Raman signal strength generally is quite weak. So this thesis uses stimulated Raman scattering method to enhance the Raman signals. The stimulated Raman scattering method requires two incident light source including the pump and the seed. About the pump light, we use two kinds of laser diodes, which is low cost and continuous-wave and with different center wavelengths, to get two sets of data. The center wavelengths of the laser diodes are 520 nm and 638 nm. About the seed light, we use a laboratory-grown Ce3+:YAG crystal fiber to produce a broadband light source, which bandwidth is approaching 100 nm and the wavelength range is from 500 to 600 nm. It can cover a wide range of Stokes of Raman spectra which is provided by biological samples that pumped by laser diode in order to enhance the signals. Currently, we could not measure the enhancement from our experiments. Therefore, we use a numerical simulation to estimate the actual situation of our experiments to get the enhanced value that is less than 1% no wonder it is difficult to measure. Then we change the parameters include pump power, seed power, sample length and Raman gain factor to analyze the influences to the results and predict the better choice of parameters if we want to measure the enhancement easily in the future.


誌謝 I
中文摘要 II
Abstract III
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1.1 研究動機與目的 2
1.2 本文概要 2
第二章 拉曼基本原理與理論模型 3
2.1 拉曼散射原理 3
2.1.1 自發性拉曼散射(Spontaneous Raman scattering) 4
2.1.2 共振拉曼散射(Resonant Raman scattering) 7
2.1.3 同調反斯托克拉曼散射(Coherent anti-Stoke Raman scattering) 8
2.1.4 受激拉曼散射(Stimulated Raman scattering) 10
2.2 拉曼特性參數 13
2.2.1 拉曼增益 13
2.2.2 訊噪比 14
2.3 利用數值方式去除螢光雜訊 16
2.3.1 快速傅立葉轉換方法 17
2.3.2 多項式擬合法 18
第三章 泵浦產生自發拉曼散射特性量測與分析 21
3.1 系統架設與元件特性 21
3.1.1 元件特性量測 21
3.1.2 系統架設 22
3.2 β-胡蘿蔔素、水與神經醯胺的拉曼特性介紹 24
3.2.1 β-胡蘿蔔素的拉曼特性 24
3.2.2 水的拉曼特性 27
3.2.3 神經醯胺的拉曼特性 28
3.3 自發拉曼訊號實驗結果 31
3.3.1 β-胡蘿蔔素 31
3.3.2 水 32
3.3.3 神經醯胺-ΙΙΙ 34
3.3.4 β胡蘿蔔素、水與神經醯胺-ΙΙΙ混合樣本 36
3.4 利用數值方式去除樣本的螢光雜訊 37
3.4.1 快速傅立葉轉換方法 37
3.4.2 多項式擬合法 38
3.4.3 三樣本混合的拉曼頻譜去螢光之分析 42
3.5 不同參數對自發拉曼訊號的影響與分析 47
3.5.1 雷射二極體功率 47
3.5.2 樣本濃度 49
3.5.3 物鏡焦距 51
3.5.4 雷射二極體波長 53
第四章 晶體光纖寬頻光源增強拉曼訊號與改善 56
4.1 摻鈰釔鋁石榴石晶體光纖寬頻光源特性 56
4.1.1 摻鈰釔鋁石榴石晶體光纖 56
4.1.2 寬頻光源特性量測 58
4.2 晶體光纖光源做種子光之受激拉曼實驗 61
4.2.1 系統架構 61
4.2.2 鎖相放大器的應用 62
4.2.3 實驗流程 67
4.3 拉曼訊號增益實驗的結果與討論 69
4.3.1 以520-nm雷射二極體做泵浦 69
4.3.2 以638-nm雷射二極體做泵浦 71
4.4 拉曼增益之數值模擬 73
4.4.1 拉曼增益係數與拉曼增益因子 73
4.4.2 光功率耦合聯立方程式 78
4.4.3 實驗參數模擬結果 79
4.5 不同參數對拉曼訊號增益的影響與未來改善 82
4.5.1 樣本長度、泵浦光功率與斯托克光功率影響 82
4.5.2 拉曼增益係數影響 86
第五章 結論與未來展望 88
5.1 結論 88
5.2 未來展望 90
參考文獻 96


[1] https://en.wikipedia.org/wiki/Raman_spectroscopy
[2] http://highscope.ch.ntu.edu.tw/wordpress/?p=62104
[3] https://en.wikipedia.org/wiki/Atopic_dermatitis
[4] https://en.wikipedia.org/wiki/Ceramide
[5] C. V. Raman, “A new radiation,” Indian Journal of Physics 2, pp. 387–398, 1928.
[6] J. A. Yeung and A. Yariv, “Spontaneous and stimulated Raman scattering in long low loss fibers,” IEEE Journal of Quantum Electronics, QE-14, pp. 347–350, 1978.
[7] J. M. Chalmers and P. R. Griffiths, "Resonance Raman spectroscopy," Handbook of Vibrational Spectroscopy, Vol. 1, pp. 534–556, 2002.
[8] P. D. Maker and R.W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Physical Review, Vol. 137, No. 3A, pp. A801–A818, 1966.
[9] C. L. Evans and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: Chemical imaging for biology and medicine," Annual Review of Analytical Chemistry, Vol. 1, pp. 883–909, 2008.
[10] E. J. Woodbury and W. K. Ng, "Ruby laser operation in the near IR," Proceedings of the IRE 50, 2367, 1962.
[11] S. P. Singh, R. Gangwar, and N. Singh, "Nonlinear scattering effectes in optical fibers," Progress In Electromagnetics Research, PIER 74, pp. 379–405, 2007.
[12] R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Applied Physics Letters, Vol. 22, No. 6, pp. 276–278, 1973.
[13] R. H. Stolen and E. P. Ippen, “Raman oscillation in glass optical waveguide,” Applied Physics Letters, Vol. 20, No. 2, pp. 62–64, 1972.
[14]P. A. Mosier-Boss, S. H. Lieberman, and R. Newbery, ”Fluorescence rejection in Raman spectroscopy by shifted-spectra, edge detection, and FFT filtering techniques,” Applied Spectroscopy, Vol. 49, No. 5, pp. 630–638, 1995.
[15] C. A. Liber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Applied Spectroscopy, Vol. 57, No. 11, pp. 1363–1367, 2003.
[16] N. Tschirner, "Raman spectroscopy of beta-carotene and CdSe-based nanocrystals," der Technischen Universitat Berlin, 2012.
[17] N. Tschirner and M. Schenderlein, "Raman excitation profiles of β-carotene-novel insights into the nature of the ν1-band," Physica Status Solidi (b) 245, No. 10, pp. 2225–2228, 2008.
[18] Ph. Vallée, J. Lafait, M. Ghomi et al., "Raman scattering of water and photoluminescence of pollutants arising from solid-water interaction," Journal of Molecular Structure, Vol. 651-653, pp. 371–379, 2003.
[19] A. Tfayli, E. Guillard, M. Manfait, and A. Baillet-Guffroy, "Molecular interactions of penetration enhancers within ceramides organization: a Raman spectroscopy approach," Analyst, Vol.137, pp. 5002–5010, 2012.
[20] P. J. Caspers, G. W. Lucassen, R. Wolthuis et al., "In vitro and in vivo Raman spectroscopy of human skin," Biospectroscopy, Vol. 4, pp. S31–S39, 1998.
[21]王政凱, "摻鈦藍寶石寬頻晶體光纖光源之製備與檢測," 國立臺灣大學光電工程學研究所, 2011.
[22]Y. Dong, G. Zhou, X. Jun et al., "Luminescence studies of Ce:YAG using vacuum ultraviolet synchrotron radiation," Materials Research Bulletin, Vol. 41, pp. 1959–1963, 2006.
[23]D. Zhang, X. Jing, and J. Yang, Biometric Image Discrimination Technologies: Idea Group Pub., 2006.
[24] http://taiwan.ni.com/lia
[25] Stanford Research System, “Model SR830 DSP lock-in amplifier,” 1993.
[26] http://www.becker-hickl.de
[27]http://jpkc.ycit.cn/rgjc/RGJC_11.htm
[28] D. R. Solli, P. Koonath, and B. Jalali, “Broadband Raman amplification in silicon,” American Institute of Physics 93, 191105, 2008.
[29]N. Tschirner, M. Schenderlein, K. Brose et al., "Raman spectroscopy of β-carotene and CdSe-based nanocrystals," Phys. Chem. 11, 2009.
[30] A. Yariv , Quantum electronics, 3rd edition, 1989.
[31]R. L. Sutherland, Handbook of nonlinear optics, 2nd edition, 2003.
[32]Y. R. Shen , The principles of nonlinear optics, 2002.
[33]L. Schneebeli, K. Kieu, E. Merzlyak et al., “Measurement of the Raman gain coefficient via inverse Raman scattering,” Journal of the Optical Society of America B, Vol. 30, No. 11, 2013.
[34]S. P. Singh, R. Gangwar, and N. Singh, “Nonlinear scattering effects in optical fibers,” Progress in Electromagnetics Research, PIER 74, pp. 379–405, 2007.
[35] G. P. Agrawal, Nonlinear fiber optics, 4th edition, 2007.
[36]A. D. Kudryavtseva, A. N. Baranov et al., “Backward stimulated Raman scattering in water and water solutions,” Proceedings of SPIE, Vol. 4199, 2001.
[37]S. R. Hawi, K. Nithipatikom, E. R. Wohlfeil et al., “Raman microspectroscopy of intracellular cholesterol crystals in cultured bovine coronary artery endothelial cells,” Journal of Lipid Research, Vol. 38, pp. 1591–1597, 1997.
[38] H. J. Chun, T. L. Weiss, T. P. Devarenne, and J. Laane, “Vibrational spectra and DFT calculations of squalene,” Journal of Molecular Structure, Vol. 1032, pp. 203–206, 2013
[39] C. Kraffta, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochimica Acta, Part A, Vol. 61, pp. 1529–1535, 2005.
[40] A. Mudalige and J. E. Pemberton, “Raman spectroscopy of glycerol/D2O solutions,” Vibrational Spectroscopy, Vol. 45, pp. 27–35, 2007.
[41]S. Bresson, M. E. Marssi, and B. Khelifa, “Raman spectroscopy investigation of various saturated monoacid triglycerides,” Chemistry and Physics of Lipids, Vol. 134, pp. 119–129, 2005.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top