跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/01 17:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳欣卉
研究生(外文):Xinhui Chen
論文名稱:探討電流聚集效應和出光對深紫外發光二極體效率影響之數值模擬與研究
論文名稱(外文):Numerical study of the current spreading and light extraction in deep UV light emitting diode
指導教授:吳育任
口試委員:楊志忠黃建璋陳奕君
口試日期:2015-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:68
中文關鍵詞:紫外發光二極體氮化鋁鎵電流分佈出光效率超晶格
外文關鍵詞:Ultraviolet light-emitting-diodeAlGaNCurrent spreadingLight extractionSuperlattice
相關次數:
  • 被引用被引用:0
  • 點閱點閱:71
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
UVLEDs are in strong demands in recent years because of their special applications in industry and medicine. However, comparing with the commercial InGaN LEDs, the overall efficiency in UVLEDs is extremely low especially in UVC spectrum. The main reasons are found to be: (a) High defect densities in the AlGaN layer that result in low IQE; (b) The activation energy of Mg doped p-AlGaN layer is relatively high, which results in the poor hole injection and the increase of resistance; (c) Large absorption rate of the conventional p-GaN contact, which makes the light extraction efficiency much lower. To improve these issues, we focus on improving the current spreading and light extraction by considering different structures or different contact layers with Poisson and drift-diffusion solver to see how they influence the efficiency in UVLEDs. Moreover, we modeled a series of AlGaN superlattice structures to confirm that such a structure has a great potential of being used as the p-contact layer instead of p-GaN contact in UVLEDs. Finally, we discuss about the AlGaN UVB LEDs to find what the more important factor to limit their efficiency is.

口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Properties of Nitride-based LED . . . . . . . . . . . . . 3
1.2 Challenge of UVLEDs and Motivation . . . . . . . . . 5
1.2.1 Insufficient Internal Quantum Efficiency . . . . 7
1.2.2 Current Crowding Effect . . . . . . . . . . . . . 9
1.2.3 Transparent p-contact Layer . . . . . . . . . . . 10
1.2.4 Brief Issues of UVB LEDs . . . . . . . . . . . . 13
2 Simulation Method . . . . . . . . . . . . . . . . . . . . . . . 14
2.1 Current Spreading Issue in UVLEDs . . . . . . . . . . 14
2.1.1 Method: 2D Poisson and Drift-Diffusion Solver 15
2.2 Modeling of LEE: 2D Monte Carlo Ray-tracing Solver . 17
2.3 Modeling of the SL Structure . . . . . . . . . . . . . . 19
2.3.1 1D Schr¨odinger Solver . . . . . . . . . . . . . . 21
2.3.2 Absorption Coefficient Calculation . . . . . . . 22
3 Study of the Current Spreading and Light Extraction of AlGaNbased
275nm UVLEDs . . . . . . . . . . . . . . . . . . . . . 24
3.1 Optimized Current Spreading Effect by Proper Spacing
between 2 Fingers in the Lateral Structure . . . . . . . 25
3.2 Simulation of Graphene as the p-contact Layer . . . . . 29
3.3 Optimized Current Spreading Effect by proper Spacing
between 2 Fingers in Vertical LED . . . . . . . . . . . 34
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 37
4 Simulation of Using p-AlGaN SL Structure as the p-contact
Layer in UVLEDs . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1 Optical Properties of AlGaN SL Structures . . . . . . . 40
4.2 Propagation Properties of AlGaN SL Structures . . . . 41
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 48
5 Simulation of AlInGaN UVB LEDs . . . . . . . . . . . . . . 49
5.1 Simulation Structure of 320 nm LED . . . . . . . . . . 49
5.2 I-V and IQE of 320 nm LED . . . . . . . . . . . . . . . 50
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

[1] J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey,B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of gan obtained from transmission measurements,”Applied Physics Letters, vol. 71, no. 18, pp. 2572–2574, 1997.
[2] N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1−xPx) junctions,” Applied Physics Letters, vol. 1, no. 4, pp. 82–83, 1962.
[3] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type mg-doped GaN films,” Japanese Journal of Applied Physics, vol. 31, no. 2B, p. L139, 1992.
[4] E. F. Schubert, Light-Emitting-Diodes. Cambridge, 2007.
[5] H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata,“Recent progress and future prospects of AlGaN-based
high-efficiency deep-ultraviolet light-emitting diodes,” Japanese Journal of Applied Physics, vol. 53, no. 10, p. 100209, 2014.
[6] B.-J. Kim, G. Yang, H.-Y. Kim, K. H. Baik, M. A. Mastro, J. K.Hite, C. R. Eddy, F. Ren, S. J. Pearton, and J. Kim, “GaN-based ultraviolet light-emitting diodes with AuCl3-doped graphene electrodes,”Opt. Express, vol. 21, pp. 29025–29030, Nov 2013.
[7] C. Pernot, S. Fukahori, T. Inazu, T. Fujita, M. Kim, Y. Nagasawa,A. Hirano, M. Ippommatsu, M. Iwaya, S. Kamiyama,
I. Akasaki, and H. Amano, “Development of high efficiency 255-355nm AlGaN-based light-emitting diodes,” physica status solidi(a), vol. 208, no. 7, pp. 1594–1596, 2011.
[8] M. A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet lightemitting diodes based on group three nitrides,” Nature Photonics,vol. 2, pp. 77–84, 2008.
[9] M. A. Khan, “AlGaNmultiple quantum well based deep UV LEDs and their applications,” physica status solidi (a), vol. 203, no. 7, pp. 1764–1770, 2006.
[10] M. A. Khan, M. Shatalov, H. P. Maruska, H. M. Wang, and
E. Kuokstis, “III-Nitride UV devices,” Japanese Journal of Applied Physics, vol. 44, no. 10R, p. 7191, 2005.
[11] T. Nishida, N. Kobayashi, and T. Ban, “GaN-free transparent ultraviolet light-emitting diodes,” Applied Physics Letters, vol. 82, no. 1, pp. 1–3, 2003.
[12] M. Erickstad, E. Gutierrez, and A. Groisman, “A low-cost lowmaintenance ultraviolet lithography light source based on lightemitting diodes,” Lab Chip, vol. 15, pp. 57–61, 2015.
[13] K. Nelson, D. McMartin, C. Yost, K. Runtz, and T. Ono, “Point-of-use water disinfection using UV light-emitting diodes to reduce bacterial contamination,” Environmental Science and Pollution Research, vol. 20, no. 8, pp. 5441–5448, 2013.
[14] M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach,A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson,and M. Weyers, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semiconductor Science and Technology, vol. 26, no. 1, p. 014036, 2011.
[15] Y. Muramoto, M. Kimura, and S. Nouda, “Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp,” Semiconductor Science and Technology, vol. 29, no. 8, p. 084004, 2014.
[16] S. Nakamura, M. Senoh, N. Iwasa, S. ichi Nagahama, T. Yamada,and T. Mukai, “Superbright green InGaN single-quantumwell-structure light-emitting diodes,” Japanese Journal of Applied Physics, vol. 34, no. 10B, p. L1332, 1995.
[17] Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada,and T. Mukai, “Ultra-high efficiency white light emitting diodes,”Japanese Journal of Applied Physics, vol. 45, no. 10L, p. L1084,2006.
[18] J. R. Chen, S. C. Ling, H. M. Huang, P. Y. Su, T. S. Ko, T. C.Lu, H. C. Kuo, Y. K. Kuo, and S. C. Wang, “Numerical study of optical properties of InGaN multi-quantum-well laser diodes with polarization-matched AlInGaN barrier layers,” Applied Physics B, vol. 95, pp. 145–153, Apr 2009.
[19] A. Avramescu, T. Lermer, J. M¨uller, S. Tautz, D. Queren, S. Lutgen,and U. Strauβ, “InGaN laser diodes with 50 mw output power emitting at 515 nm,” Applied Physics Letters, vol. 95, no. 7,p. 071103, 2009.
[20] R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Applied Physics Letters, vol. 94, no. 6, p. 063505,2009.
[21] A. S. Sedra and K. C. Smith, Microelectronic circuits, vol. 1.Oxford University Press, 1998.
[22] Y. S. Kim and R. H. Pratt, “Direct radiative recombination of electrons with atomic ions: Cross sections and rate coefficients,”Phys. Rev. A, vol. 27, pp. 2913–2924, Jun 1983.
[23] J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures. Cambridge University Press, Cambridge, 2003.
[24] H.-H. Huang and Y.-R. Wu, “Light emission polarization properties of semipolar InGaN/GaN quantum well,” Journal of Applied Physics, vol. 107, no. 5, p. 053112, 2010.
[25] C.-P. Wang and Y.-R. Wu, “Study of optical anisotropy in nonpolar and semipolar AlGaN quantum well deep ultraviolet light emission diode,” Journal of Applied Physics, vol. 112, no. 3,p. 033104, 2012.
[26] H.-M. Huang, H.-H. Huang, Y.-R. Wu, and T.-C. Lu, “Abnormal polarization switching phenomenon in a-plane AlxGa1−xN,” Opt. Express, vol. 18, pp. 21743–21749, Oct 2010.
[27] T. Takeuchi, H. Amano, and I. Akasaki, “Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells,” Japanese Journal of Applied Physics, vol. 39, no. 2R, p. 413, 2000.
[28] H.-H. Huang and Y.-R. Wu, “Study of polarization properties of light emitted from a-plane InGaN/GaN quantum well-based light emitting diodes,” Journal of Applied Physics, vol. 106, no. 2, p. 023106, 2009.
[29] S. Ghosh, P. Waltereit, O. Brandt, H. T. Grahn, and K. H. Ploog,“Electronic band structure of wurtzite GaN under biaxial strain in the m plane investigated with photoreflectance spectroscopy,”Phys. Rev. B, vol. 65, p. 075202, Jan 2002.
[30] H. Sato, A. Tyagi, H. Zhong, N. Fellows, R. B. Chung, M. Saito,K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High power and high efficiency green light emitting diode on freestanding semipolar (11¯22) bulk GaN substrate,” Physica Status Solidi - Rapid Research Letters, vol. 1, no. 4, pp. 162–164, 2007.
[31] C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti,and J. S. Speck, “The efficiency challenge of nitride light-emitting diodes for lighting,” Phys. Status Solidi A, vol. 212, pp. 899–913,2015.
[32] J. Rass, T. Kolbe, N. Lobo-Ploch, T. Wernicke, F. Mehnke,C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko,J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers,and M. Kneissl, “High-power UV-B LEDs with long lifetime,”Proc. SPIE, vol. 9363, pp. 93631K–93631K–13, 2015.
[33] M. Shatalov, J. Yang, Y. Bilenko, M. Shur, and R. Gaska, “AlGaN deep ultraviolet LEDs with external quantum efficiency over 10%,” in Lasers and Electro-Optics Pacific Rim (CLEO-PR),2013 Conference on, pp. 1–2, June 2013.
[34] W. Yang, J. Li, Y. Zhang, P.-K. Huang, T.-C. Lu, H.-C. Kuo,S. Li, X. Yang, H. Chen, D. Liu, and J. Kang, “High density GaN/AlN quantum dots for deep uv led with high quantum efficiency and temperature stability,” Sci. Rep., vol. 4, pp. 51–66,2014.
[35] H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano,K. Tsubaki, and N. Kamata, “222-282 nm AlGaN and InAlGaNbased deep-UV leds fabricated on high-quality AlN on sapphire,”physica status solidi (a), vol. 206, no. 6, pp. 1176–1182, 2009.
[36] H. Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, and N. Kamata,“231-261nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulseflow method on sapphire,” Applied Physics Letters, vol. 91, no. 7,p. 071901, 2007.
[37] E. C. Young, B. P. Yonkee, F. Wu, B. K. Saifaddin, D. A. Cohen,S. P. DenBaars, S. Nakamura, and J. S. Speck, “Ultraviolet light emitting diodes by ammonia molecular beam epitaxy on metamorphic (20¯21) AlGaN/GaN buffer layers,” Journal of Crystal Growth, pp. 0022–0248, 2015.
[38] C.-K. Li, M. Rosmeulen, E. Simoen, and Y.-R.Wu, “Study on the optimization for current spreading effect of lateral GaN/InGaN LEDs,” Electron Devices, IEEE Transactions on, vol. 61, pp. 511–517, Feb 2014.
[39] C.-K. Li and Y.-R. Wu, “Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs,”Electron Devices, IEEE Transactions on, vol. 59, pp. 400–407, Feb 2012.
[40] H.-Y. Ryu, I.-G. Choi, H.-S. Choi, and J.-I. Shim, “Investigation of light extraction efficiency in AlGaN deep-ultraviolet lightemitting diodes,” Applied Physics Express, vol. 6, no. 6, p. 062101,2013.
[41] H.-D. Kim, H.-M. An, K. H. Kim, S. J. Kim, C. S. Kim, J. Cho, E. F. Schubert, and T. G. Kim, “A universal method of producing transparent electrodes using wide-bandgap materials,” Advanced Functional Materials, vol. 24, no. 11, pp. 1575–1581, 2014.
[42] Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature, vol. 441, pp. 325–328, 2006.
[43] A. Allerman, M. Crawford, M. Miller, and S. Lee, “Growth and characterization of Mg-doped AlGaN-AlN short-period superlattices for deep-UV optoelectronic devices,” Journal of Crystal Growth, vol. 312, no. 6, pp. 756–761, 2010.
[44] E. Becatti, K. Petroni, D. Giuntini, A. Castagna, V. Calvenzani,G. Serra, A. Mensuali-Sodi, C. Tonelli, and A. Ranieri, “Solar UV-B radiation influences carotenoid accumulation of tomato fruit through both ethylene-dependent and -independent mechanisms,”Journal of Agricultural and Food Chemistry, vol. 57,no. 22, pp. 10979–10989, 2009.
[45] Y.-R. Wu, M. Singh, and J. Singh, “Sources of transconductance collapse in III-V nitrides - consequences of velocity-field relations and source/gate design,” Electron Devices, IEEE Transactions on, vol. 52, no. 6, pp. 1048–1054, 2005.
[46] C.-I. Huang, H.-A. Chin, Y.-R. Wu, I.-C. Cheng, J. Chen, K.-C.Chiu, and T.-S. Lin, “Mobility enhancement of polycrystalline MgZnO/ZnO thin film layers with modulation doping and polarization effects,” Electron Devices, IEEE Transactions on, vol. 57,no. 3, pp. 696–703, 2010.
[47] Y.-R. Wu, R. Shivaraman, K.-C. Wang, and J. S. Speck, “Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure,” Applied Physics Letters, vol. 101, no. 8, p. 083505, 2012.
[48] Y.-R. Wu, C. Chiu, C.-Y. Chang, P. Yu, and H.-C. Kuo, “Sizedependent strain relaxation and optical characteristics of InGaN/GaN nanorod LEDs,” Selected Topics in Quantum Electronics, IEEE Journal of, vol. 15, pp. 1226–1233, July 2009.
[49] Y.-R. Wu, M. Singh, and J. Singh, “Gate leakage suppression and contact engineering in nitride heterostructures,” Journal of Applied Physics, vol. 94, no. 9, pp. 5826–5831, 2003.
[50] L. Pavesi, E. Tuncel, B. Zimmermann, and F. K. Reinhart,“Photoluminescence of disorder-induced localized states in GaAs/AlxGa1−xAs superlattices,” Phys. Rev. B, vol. 39, pp. 7788–7795, Apr 1989.
[51] A. Akturk and N. Goldsman, “Electron transport and full-band electron-phonon interactions in graphene,” Journal of Applied Physics, vol. 103, no. 5, p. 053702, 2008.
[52] J.-H. Chen, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,”Nat Nano, vol. 3, pp. 206–209, 2008.
[53] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat Mater, vol. 6, pp. 183–191, Mar 2007.
[54] A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett., vol. 100, p. 117401, Mar 2008.
[55] Y. Miao, B. Liu, K. Zhang, Y. Liu, and H. Zhang,“Temperature tunability of photonic crystal fiber filled with Fe3O4 nanoparticle fluid,” Applied Physics Letters, vol. 98, no. 2, p. 021103, 2011.
[56] D. Kim, Y. Sung, J. Park, and G. Yeom, “A study of transparent indium tin oxide (ITO) contact to p-GaN,” Thin Solid Films,
vol. 398-399, no. 0, pp. 87 – 92, 2001. Proceedings of the 28th International Conference on Metallurgic Coatings and Thin Films.
[57] N. Nepal, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang,“Temperature and compositional dependence of the energy band gap of AlGaN alloys,” Applied Physics Letters, vol. 87, no. 24,p. 242104, 2005.
[58] T.-J. Yang, R. Shivaraman, J. S. Speck, and Y.-R. Wu, “The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior,” Journal of Applied Physics, vol. 116, no. 11, p. 113104, 2014.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top