跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 06:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭美家
研究生(外文):Mei-Chia Kuo
論文名稱:奈米矽晶微碟共振腔發光特性與迴音廊模態之研究
論文名稱(外文):Whispering-gallery Modes and Light Emission from Silicon-Nanocrystal-Embedded Microdisk Resonators
指導教授:毛明華毛明華引用關係
指導教授(外文):Ming-Hua Mao
口試委員:彭隆瀚林浩雄黃鼎偉
口試日期:2015-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:54
中文關鍵詞:微碟共振腔奈米矽晶
外文關鍵詞:MicrodiskSi nanocrystal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們以電漿增強式化學氣相沈積法成長並在高溫熱退火下形成奈米矽晶的薄膜當作主動層,成功製作出了內含奈米矽晶的微碟共振腔,在室溫環境下,在600nm~1000nm的波段之中,量測到明顯的迴音廊模態。
奈米矽晶微碟共振腔分別以兩種不同的微影方式製作,以標準微影製程做出直徑10μm與20μm的微碟,以電子束微影製程做出直徑4、6、8、10μm的微碟,量測直徑8μm的微碟,Q值最高可達到1200,而直徑10μm的微碟可達到2400,我們同時也製作了厚度較厚的直徑10μm的微碟,希望能夠增加在主動層內的侷限。我們也能利用奈米矽晶/二氧化矽超晶格結構製作出微碟共振腔,同時也量測到了迴音廊模態。
最後針對入射功率的改變,量測輸出功率的變化,但沒有觀察到雷射閥值,主要原因為在很低的功率下,奈米矽晶就已經達到飽和狀態,而入射功率與線寬的關係部分應是有受激載子吸收的效應,造成模態擴張線寬增加的趨勢。



We have successfully fabricated optically active microdisk resonators with Si nanocrystals grown by plasma enhanced chemical vapor deposition (PECVD) and the post-annealing process. The room-temperature photoluminescence from single microdisk shows the characteristic modal structure of whispering-gallery modes in the wavelength between 600nm and1000nm.
We fabricated Si-nanocrystal-embedded microdisk resonators by two different lithography processes. We use standard lithography to fabricate the microdisk resonators with diameters of 10μm and 20μm and electron-beam lithography for 4-μm, 6-μm, 8-μm and 10-μm-diameter disks. The quality factors of 8μm and 10μm disks can reach 1200 and 2400 respectively. We also fabricated thicker 10-μm-diameter disks to increase the confinement of the disk. We can also use Si-nc/SiO2 superlattice as the active layer in the microdisk resonators and the WGMs were observed clearly
Finally, we discussed the relation between pump power and output power. We observed the saturation of the excitable nanocrystals at low pump power and the linewidth broadening with pump power increasing due to the excited carrier absorption (ECA).


摘要 i
Abstract ii
目錄 iii
圖目錄 iv
第 1 章 簡介 1
1.1 奈米矽晶 1
1.2 微碟共振腔 3
1.3 研究動機 6
1.4 論文架構 7
第 2 章 理論 8
2.1 量子侷限效應 8
2.2 迴音廊模態 9
2.3 Q值 14
第 3 章 元件製程 16
3.1 薄膜沉積(PECVD) 16
3.2 高溫熱退火 (Annealing) 17
3.3 微影與反應式離子蝕刻 (Photolithography and RIE etching) 19
3.4 結構分析 20
第 4 章 量測架構 25
第 5 章 實驗結果與討論 28
5.1 製程結果 28
5.2 量測結果 30
第 6 章 結論 50
Reference 51


[1] Greg. Sun. ”Advances in Lasers and Electro Optics”, chap 13 (2010)
[2] Canham, L. T. “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers”, Applied Physics Letters 57.10 (1990): 1046-1048.
[3] Filonov A. B., Ossicini S., Bassani F., and Arnaud d''Avitaya F. ” Effect of oxygen on the optical properties of small silicon pyramidal clusters”, Phys. Rev. B 65, 195317 (2002)
[4] Wolkin M. V., Jorne J., Fauchet P. M., Allan G., and Delerue c. ” Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen”, Phys. Rev. Lett. 82,197 (1999)
[5] Zhou F., and Head J. D. ” Role of Si=O in the Photoluminescence of Porous Silicon”, J. Phys. Chem. B 104,9981 (2000)
[6] Baierle R.J., Caldas M.J., Molinari E., and Ossicini S. ”Optical emission from small Si particles”, Solid State Communications 102,545 (1997)
[7] Puzder A., Williamson A.J., Grossman J.C., and Galli G. ”Surface Chemistry of Silicon Nanoclusters”, Phys. Rev. Lett. 88, 97401 (2002)
[8] Kobitski A. Yu, Zhuravlev K. S., Wagner H. P., and Zahn D. R. T. ” Self-trapped exciton recombination in silicon nanocrystals”, Phys. Rev. B. 63, 115423 (2001)
[9] Kanemitsu Y., Ogawa T., Shiraishi K., Takeda K. ” Visible photoluminescence from oxidized Si nanometer-sized spheres: Exciton confinement on a spherical shell”
, Phys. Rev. B. 48, 4883 (1993)
[10] Klimov V. I., Schwarz Ch. J., McBranch D. W., White C. W. ” Initial carrier relaxation dynamics in ion-implanted Si nanocrystals: Femtosecond transient absorption study”, Appl. Phys. Lett. 73,18,2603 (1998)
[11] K. J. Vahala “Optical microcavities”, Nature, vol. 424, no. 6950, pp. 839–846 (2003)
[12]T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala “Fabrication and coupling to planar high-Q silica disk microcavities”, Appl. Phys. Lett., vol. 83, no. 4, pp. 797–799 (2003)
[13]P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi “Integration of
fiber-coupled high-Q SiNx microdisk with atom chips”, Appl. Phys. Lett., vol. 89, no. 13, pp. 131108-1–131108-3 (2006)
[14]U. Mohideen, W. S. Hobson, S. J. Pearton, F. Ren, and R. E. Slusher “GaAs/AlGaAs microdisk lasers”, Appl. Phys. Lett., vol. 64, no. 15, pp. 1911–1913 (1994)
[15]V. Zwiller, S. Fälth, J. Persson, W. Seifert, L. Samuelson, and G. Björk “Fabrication and time-resolved studies of visible microdisk lasers”, J. Appl. Phys., vol. 93, no. 4, pp. 2307–2309 (2003)
[16]E. D. Haberer, R. Sharma, C. Meier, A. R. Stonas, S. Nakamura, S. P. DenBaars, and E. L. Hu “Free-standing, optically pumped, GaN/InGaN microdisk lasers fabricated by photoelectrochemical etching”, Appl. Phys. Lett., vol. 85, no. 22, pp. 5179–5181 (2004)
[17]M. Kuwata-Gonokami, R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L. Schilling, R. E. Slusher, and S. Ozawa “Polymer microdisk and microring lasers”, Opt. Lett., vol. 20, no. 20, pp. 2093–2095 (1995)
[18]J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator”, Nature Photon., vol. 4. no. 1, pp. 46–49 (2010)
[19]W. Kim, Ş. K. Özdemir, J. Zhu, L. He, and L. Yang “Demonstration of mode splitting in an optical microcavity in aqueous environment”, Appl. Phys. Lett., vol. 97, no. 7, pp. 071111-1–0711113 (2010)
[20]M. Gregor, C. Pyrlik, R. Henze, A. Wicht, A. Peters, and O. Benson “An alignment-free fiber-coupled microsphere resonator for gas sensing applications”, Appl. Phys. Lett., vol. 96, no. 23, pp. 231102-1–231102-3 (2010)
[21]C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing”, Appl. Phys. Lett., vol. 94, no. 23, pp. 231119-1–231119-3 (2008)
[22] Debieu, Olivier. “Optical characterization of luminescent silicon nanocrystals embedded in glass matrices”, doctoral dissertation, Friedrich-Schiller-Universität Jena, Germany (2008)
[23] S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan “Whispering-gallery mode microdisk lasers”, Appl. Phys. Lett., vol. 60, no. 3, 289–291 (1992)
[24] R. E. Slusher, A. F. J. Levi, U. Mohiideen, S. L. McCall, S. J. Pearton, and R. A. Logan “Threshold characteristics of semiconductor microdisk lasers”, Appl. Phys. Lett., vol. 63, no. 10, pp. 1310–1312 (1993)
[25] B. E. A. Saleh and M. C. Teich ”Fundamentals of Photonics”, Hoboken, NJ: John Wiley & Sons (1991)
[26]M. Borselli, T. J. Johnson, and O. Painter “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment”, Opt. Express, vol. 13, no. 5, pp. 1515–1530 (2005)
[27]C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu “Wavelength- and material-dependent absorption in GaAs and AlGaAs microcavities”, Appl. Phys. Lett., vol. 90, no. 5, pp. 051108-1–051108-3 (2007)
[28]M. Ghulinyan, D. Navarro-Urrios, A. Pitanti, A. Lui, G. Pucker, and L. Pavesi “Whispering-gallery modes and light emission from a Si-nanocrystal-based single microdisk resonator”, Opt. Express, vol. 16, no. 17, pp. 13218–13224 (2008)
[29]馬群哲,「以電漿增強式化學氣相沈積法成長奈米矽晶及其特性研究
」國立台灣大學碩士論文 (2014)
[30] Catherine Louise Bonner “Multi-watt, diode pumped planar waveguide lasers.”, doctoral dissertation, University of Southampton, United Kingdom. (2000)
[31] J. Verbert, F. Mazen “Efficient coupling of Er-doped silicon-rich oxide to microdisk whispering gallery modes”, Appl. Phys. Lett. 86, 111117 (2005)
[32] A. L. Schawlow and C. H. Townes “Infrared and Optical Masers”, Phys. Rev. 112, 1940 (1958)
[33] Xiaoming Wen, Lap Van Dao, Peter Hannaford, Eun-Chel Cho, Young H Cho and Martin A Green ”Excitation dependence of photoluminescence in silicon quantum dots”, New Journal of Physics 9, 337 (2007)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top