跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/03 23:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李奕德
研究生(外文):I-Te Lee
論文名稱:溫度效應對發光電晶體的光調變頻寬與截止頻率影響之研究
論文名稱(外文):Characteristics of Temperature Effect on Optical Bandwidth and Cut-off Frequency in the Light Emitting Transistors
指導教授:吳肇欣
口試委員:林浩雄黃建璋陳敏璋
口試日期:2015-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:58
中文關鍵詞:發光電晶體電流增益光調變速度截止頻率溫度感測器
外文關鍵詞:light-emitting transistorscurrent gainoptical bandwidthcut-off frequencytemperature sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:75
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文的主要研究為針對溫度效應對發光電晶體的光電特性之影響,藉由量測InGaP/GaAs發光電晶體,發現發光電晶體的電流增益會隨溫度而增加然而發光強度則隨著溫度而減少,並且發現發光電晶體隨著溫度的上升,光調變頻寬會隨著增強的新物理現象,此現象與傳統發光二極體的光調變頻寬會隨著溫度上升而下降之現象相反,主要由於在發光電晶體中基極集極介面之逆偏壓會將載子掃到集極區,使得載子濃度在基極集極介面趨近於零,少數載子在基極形成三角形的分布,生命週期較長的載子因而擴散至基極集極介面並被掃到集極區,所以溫度上升時,等效的複合週期幾乎維持定值使得光調變速度不隨之下降。
在溫度上升時,載子獲得較高的動能而有更高的機會跳出發光電晶體中的量子井而流到集極區,所以電流增益會隨溫度增加而增加,載子在基極中的傳輸時間(base transit time)也因此隨溫度上升而減少,進而使得載子從射極到集極的傳輸時間(emitter-to-collector transit time)隨溫度上升而減少且發光電晶體的截止頻率(f_T)隨溫度上升而上升,此現象也與異質介面電晶體(HBT)的現象不同其截止頻率隨溫度上升而下降。
載子逃脫出量子井的生命週期為溫度的指數函數,發光電晶體有潛力利用電流增益隨溫度上升而上升的現象而成為高解析度溫度感測器,一個高解析度溫度感測器的前端設計須具備越大的溫度產生之訊號及越小的雜訊,為了增加溫度產生之訊號,我們設計將兩顆發光電晶體串接形成達靈頓對,當溫度上升時,第一顆發光電晶體增加的電流將再被第二顆發光電晶體放大,所以此設計會使因溫度上升而增加的電流更顯著的增加,成為高解析度溫度感測器的前端設計。


This thesis presents the effects of temperature on the light-emitting transistor (LET), specifically its effects on the DC I-V characteristics and the RF characteristics. The electrical and optical characteristics of the InGaP/GaAs LET with two undoped InGaAs quantum-wells (QWs) embedded in the base region operated from 25℃ to 55℃ are demonstrated. The LET is a unique semiconductor optoelectronic device with both electrical and optical outputs, which provides potential applications in future optical interconnects and photonic integrated circuits. LETs and transistors lasers (TLs) have gotten a lot of attention due to their high-speed characteristics and potential for use in the next era of Internet of Things (IoT).
At elevated temperatures, the current gain of the LET is increased and the optical modulation bandwidth is also enhanced. Both findings are interesting and contradictory to the behaviors of conventional heterojunction bipolar transistors (HBTs) or light-emitting diodes (LEDs). The physics of temperature-induced carrier dynamics in the active region of LETs is unique and resulted from the inherent transistor tilted-charge population instead of stored-charge population of diodes.
The effective base transit time will decrease with temperature due to the reduction of thermionic emission lifetime. As a result, the cut-off frequency of the LET increases with the temperature which is also different from the conventional HBTs.
The thermionic emission in the quantum well increases with temperature resulting in the increase of the current gain. In order to increase the temperature-to-voltage signal for high resolution temperature sensor, the simple circuits are designed and fabricated. Due to the characteristic that the thermionic emission is sensitive to the temperature, it has the potential as the front end of the high resolution smart temperature sensor.


口試委員會審定書 #
誌謝 I
中文摘要 II
ABSTRACT III
CONTENTS V
LIST OF FIGURES VII
LIST OF TABLES X
CHAPTER 1 INTRODUCTION 1
1.1 MOTIVATION 1
1.2 LIGHT EMITTING TRANSISTORS 3
CHAPTER 2 ENHANCEMENT OF OPTICAL MODULATION BANDWIDTH AT HIGH-TEMPERATURE OPERATION IN LIGHT-EMITTING TRANSISTORS 5
2.1 MOTIVATION 6
2.2 DEVICE LAYER STRUCTURES AND LAYOUT DESIGN 7
2.3 MEASUREMENT SETUP 8
2.4 ELECTRICAL AND OPTICAL CHARACTERISTICS 9
2.4.1 DC Measurement of I-V Characteristics and Optical Power 9
2.4.2 RF Measurement of Optical Modulation Responses 15
2.5 SUMMARY 17
CHAPTER 3 CUT-OFF FREQUENCY ENHANCEMENT AT HIGH TEMPERATURE OPERATION AND BASE TRANSIT TIME ANALYSIS OF THE LIGHT-EMITTING TRANSISTOR 18
3.1 MOTIVATION 19
3.2 EXPERIMENT FLOW 20
3.3 BASE TRANSIT TIME ANALYSIS 21
3.4 SUMMARY 26
CHAPTER 4 DESIGN OF THE FRONT END OF THE SMART TEMPERATURE SENSOR USING THE LIGHT-EMITTING TRANSISTOR… 27
4.1 MOTIVATION 28
4.2 DESIGN METHODOLOGY 30
4.3 LAYER STRUCTURE 32
4.4 DEVICE FABRICATION 34
4.5 RESULT AND DISCUSSION 39
4.5.1 Characteristics of the Single LET 40
4.5.2 Characteristics of the Darlington LET 44
4.6 SUMMARY 53
CHAPTER 5 CONCLUSION 54
REFERENCE 56



1.CISCO Systems Inc., “Number of connected objects expected to reach 50bn by 2020,” 2013.
2.J. Bardeen and W. H. Brattain, Phys. Rev. 74, 230, July 1948.
3.M. Feng, N. Holonyak, Jr., and R. Chan, “Light-emitting transistor: Light emission from InGaP/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett. vol. 84, no. 1, pp.151-153, Jan. 2004.
4.M. Feng, N. Holonyak, Jr., and R. Chan, “Quantum-well-base heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. vol. 84, no. 11, pp.1952-1954, Mar. 2004.
5.G. Walter, C. H. Wu, H. W. Then, M. Feng, and N. Holonyak, Jr., “4.3 GHz optical bandwidth light emitting transistor,” Appl. Phys. Lett. vol. 94, no. 24, 241101, 2004.
6.M. K. Wu, M. Feng, and N. Holonyak, Jr., “Voltage modulation of a vertical cavity transistor laser via intra-cavity photon-assisted tunneling,” Appl. Phys. Lett. vol. 101, no. 8, 081102, 2012.
7.C. H. Wu and C. H. Wu, “Analysis of different tunneling mechanisms of InxGa1-xAs/AlGaAs tunnel junction light-emitting transistors,” Appl. Phys. Lett. vol. 105, no. 17, 171104, 2014.
8.B. G. Streetman and S. K. Banerjee, Solid State Electronic, 6th ed., 2006.
9.H. L. Wang, P. H. Chou, and C. H. Wu, “Microwave determination of quantum-well capture and escape time in light-emitting transistors,” IEEE Trans. Electron Devices, vol. 60, no. 3, pp. 1088–1091, Mar. 2013.
10.H. Schneider and K. V. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1-xAs multiple-quantum well structure,” Phys. Rev., vol. B 38, pp. 6160-6165, Sep. 1988.
11.T. Keating, X. Jin, S. L. Chuang, and K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers,” IEEE J. Select. Topics Quantum Electronics, vol. 35, no. 10, pp. 1526–1534, Oct. 1999.
12.R. F. Nabiev, E. C. Vail, and C. J. Chang-Hasnain, “Temperature dependent efficiency and modulation characteristics of Al-free 980-nm laser diode,” IEEE J. Select. Topics Quantum Electronics, vol. 1, no. 2, pp. 234–243, Jun. 1995.
13.J. Laskar, A. W. Hanson, B. T. Cunningham, James Kolodzey, Gregory Stillman and Swamy J. Prasad, “Effect of reduced temperature on the fT AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Electron Devices, vol. 12, no. 6, Jun. 1991.
14.J. Kruse, P. J. Mares, D. Scherrer, M. Feng and G. E. Stillman, “Temperature dependent study of carbon-doped Inp/InGaAs HBT’s,” IEEE Electron Devices, vol. 17, no. 1, Jan. 1996.
15.Y. M. Hsin, W. B. Tang, H. T. Hsu, “Temperature dependence of electron saturation velocity in GaAs measured in InGaP/GaAs HBT using DC and AC approaches,” Solid-State Electronics, vol. 49, pp. 295-300, Nov. 2005.
16.W. Liu, D. Costa, and J. S. Harris, Jr., “Derivation of the emitter–collector transit time of heterojunction bipolar transistors,” Solid State Electronics, vol. 35, no. 4, pp. 541–545, Apr. 1992.
17.H. L. Wang, H. H. Yang, and C. H. Wu, “Quantum well saturation effect on the reduction of base transit time in light-emitting transistors,” IEEE Electron Devices, vol. 61, no. 10, Oct. 2014.
18.D. Shim, H. Jeong, H. Lee, C. Rhee, D. K. Jeong, and S. Kim, “A process-variation-tolerant on-chip CMOS thermometer for auto temperature compensated self-refresh of low-power mobile DRAM,” IEEE J. Solid-State Circuits, vol. 48, no.10, pp. 2550-2557, Oct. 2013.
19.K. Souri, Y. Chae, K. A. A. Makinwa, “A CMOS temperature sensor with a voltage-calibrated inaccuracy of ±0.15℃ (3σ) from -55℃ to 125℃,” IEEE J. Solid-State Circuits, vol. 48, no.1, pp. 292-301, Jan. 2013.
20.K. Souri, Y. Chae, F. Thus, K. A. A. Makinwa, “A 0.85V 600nW all-CMOS temperature sensor with an inaccuracy of ±0.4℃ (3σ) from -40℃ to 125℃,” IEEE Solid-State Circuits Conference, 2014.
21.K. Souri, Y. Chae, Y. Ponomarev, K. A. A. Makinwa, “A precision DTMOST-based temperature sensor,” Proc. ESSCIRC, Sept. 2011.
22.M. A. P. Pertijs, A. L. Aita, K. A. A. Makinwa, and J. H. Huijsing, “Voltage calibration of smart temperature sensors,” IEEE Sensors Conference, 2008.
23.M. H. Perrott, J. C. Salvia, F. S. Lee, A. Partridge, S. Mukherjee, C. Arft, J. Kim, N. Arumugam, P. Gupta, S. Tabatabaei, S. Pamarti, H. Lee, F. Assaderaghi, “A temperature-to-digital converter for a MEMS-based programmable oscillator with < ±0.5-ppm frequency stability and < 1-ps integrated jitter,” IEEE J. Solid-State Circuits, vol. 48, no.1, pp. 276-291, Jan. 2013.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top