跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 08:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈柏言
研究生(外文):Po-Yen Shen
論文名稱:快速大氣噴射電漿燒結氧化鐵/奈米碳管製程開發:應用於超級電容
論文名稱(外文):Rapid Atmospheric-Pressure-Plasma-Jet SinteredNanoporous Fe2O3/Carbon Nanotube Composites: Application to Supercapacitors
指導教授:陳奕君陳奕君引用關係
口試委員:張世航
口試日期:2015-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:95
中文關鍵詞:氧化鐵奈米碳管乙基纖維素大氣電漿
外文關鍵詞:iron oxidecarbon nanotubeAPPJEthyl cellulose ethoce
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究藉由使用有機溶劑混合奈米碳管、氧化鐵、乙基纖維素(黏著劑)調製而成奈米碳管和氧化鐵的複合膠狀溶液。再利用網印製程成膜並以大氣電漿進行表面處理,研究碳管/氧化鐵複合薄膜性質。經過大氣電漿噴射過的薄膜,表面會呈現多孔性結構,且碳成分和有機鍵結及成分會隨著大氣電漿的處理時間變長而變少,這是因為乙基纖維素受大氣電漿反應並被噴流帶走。1wt%奈米碳管摻雜的氧化鐵薄膜電阻率高達108(Ω-cm),經過大氣電漿表面處理後降到106(Ω-cm),添加5wt%碳管量電阻率為104(Ω-cm),經過大氣電漿表面處理後降到102(Ω-cm)。
第二部分的實驗我們藉由大氣電漿分散裝置進行大面積大氣電漿處理,我們藉由不銹鋼製成的T型夾具安裝在大氣電漿的噴管。在噴管正下方處所受到的電漿處理最劇烈,電漿溫度也越高,隨著距離噴管正下方越遠,電漿處理的溫度越弱,但長時間下來也能達到400°C左右。從水接觸角和表面型態來看,最外圍的試片仍能受大氣電漿影響反應,但效果不如正中心點劇烈。


An iron oxide/carbon nanotube mixture pastes were prepared by dissolving Fe2O3 nano-powder and carbon nanotubes in ethanol and terpineol with ethyl cellulose as a binder. The pastes were then screen-printed on the glass substrates, followed by a sintering process using atmospheric pressure plasma jet (APPJ.) The resultant films revealed nanoporous feature. The carbon content decreased as the APPJ sintering time increased and the resistivity decreased by two orders of magnitude. 5 wt% CNT doped Fe2O3 nanoporous films revealed a better conductivity. The sintered Fe2O3/CNT composites were then used as the electrodes of a supercapacitor. A rapid charging/discharging was demonstrated.
In the second part of the experiment, an APPJ T-shape expander was installed at the exit of the jet to expand the effective APPJ treatment area. The APPJ treatment area can be extended to an area with a diameter of 4 inches. The steady state temperature at the outer rim of the expander can reach 400 °C. The effectiveness of the plasma influence decreased as the distance increased from the center line of the plasma jet.


中文摘要........................................................................................................................ii
Abstract ........................................................................................................................ iii
目錄.............................................................................................................................iv
圖目錄..........................................................................................................................vii
表目錄............................................................................................................................x
第一章緒論................................................................................................................1
1.1 前言.................................................................................................................1
1.2 研究動機.........................................................................................................2
1.3 論文架構..........................................................................................................2
第二章材料特性與文獻回顧......................................................................................4
2.1 奈米碳管之歷史與發展.................................................................................4
2.2 氧化鐵材料之歷史與發展.............................................................................9
2.3 氧化鐵奈米碳管複合材料發展...................................................................10
2.4 大氣電漿.......................................................................................................12
2.5 超級電容發展...............................................................................................16
第三章實驗方法與流程............................................................................................19
3.1 實驗相關耗材及器材....................................................................................19
3.2 製程流程.......................................................................................................21
3.2.1 基板清洗............................................................................................21
3.2.2 漿料調製............................................................................................22
3.2.3 氧化鐵/奈米碳管複合材料於玻璃基板上的製備...........................23
3.2.4 氧化鐵/奈米碳管複合材料於超級電容上的製備...........................24
v
3.3 製程儀器原理...............................................................................................25
3.3.1 爐管熱退火處理.................................................................................25
3.3.2 大氣電漿處理.....................................................................................25
3.3.3 電子束蒸鍍機.....................................................................................27
3.4 量測儀器原理...............................................................................................28
3.4.1 掃描式電子顯微鏡(scanning electron microscope) ...........................28
3.4.2 紫外光-可見光光譜儀(UV-Visible spectrometer).............................30
3.4.3 掠角X 光繞射量測(Grazing Incident X-ray diffusion,GIXRD).......31
3.4.4 傅立葉紅外光譜: ...............................................................................33
3.4.5 電性量測: ...........................................................................................33
3.4.6 電子微探分析儀: ...............................................................................34
第四章結果與討論....................................................................................................35
4.1 大氣噴射電漿於氧化鐵奈米碳管薄膜實驗結果........................................35
4.1.1 薄膜晶格結構分析.............................................................................36
4.1.2 薄膜表面型態分析.............................................................................40
4.1.3 薄膜成分分析.....................................................................................45
4.1.4 傅立葉紅外光譜分析.........................................................................47
4.1.5 電特性分析.........................................................................................49
4.1.6 光學穿透特性分析.............................................................................54
4.2 大氣噴射電漿於大面積表面處理之實驗結果............................................56
4.2.1 薄膜表面型態分析.............................................................................58
4.2.2 薄膜電性分析.....................................................................................60
4.2.3 薄膜水接觸角分析.............................................................................61
4.2.4 光學穿透分析.....................................................................................63
4.3 氧化鐵奈米碳管薄膜應用在超級電容........................................................64
vi
第五章 結論與未來展望..........................................................................................66
第六章參考文獻......................................................................................................67
附錄I 大氣電漿大面積製程應用在表面處理碳纖維布.........................................71
7.1 水接觸角........................................................................................................72
7.2 碳布表面型態分析........................................................................................73
附錄II 以溶膠凝膠法製備氧化鋅鎂鉿薄膜之光電特性研究................................75

1 Gao, G. et al. CNTs in situ attached to alpha-Fe2O3 submicron spheres for
enhancing lithium storage capacity. ACS applied materials & interfaces 7,
340-350, doi:10.1021/am506238q (2015).
2 Zhu, X., Song, X., Ma, X. & Ning, G. Enhanced electrode performance of Fe2O3
nanoparticle-decorated nanomesh graphene as anodes for lithium-ion
batteries. ACS applied materials & interfaces 6, 7189-7197,
doi:10.1021/am500323v (2014).
3 .
4 Iijima, S. Helical microtubules of graphitic carbon. nature 354, 56-58 (1991).
5 Thostenson, E. T., Ren, Z. & Chou, T.-W. Advances in the science and
technology of carbon nanotubes and their composites: a review. Composites
science and technology 61, 1899-1912 (2001).
6 Hu, Y., Shenderova, O. A., Hu, Z., Padgett, C. W. & Brenner, D. W. Carbon
nanostructures for advanced composites. Reports on Progress in Physics 69,
1847-1895, doi:10.1088/0034-4885/69/6/r05 (2006).
7 <奈米碳管簡介.pdf>.
8 <奈米碳管 浮動催化.pdf>.
9 Wang, Y., Wu, J. & Wei, F. A treatment method to give separated multi-walled
carbon nanotubes with high purity, high crystallization and a large aspect
ratio. Carbon 41, 2939-2948, doi:10.1016/s0008-6223(03)00390-7 (2003).
10 Keidar, M. & Waas, A. M. On the conditions of carbon nanotube growth in the
arc discharge. Nanotechnology 15, 1571-1575,
doi:10.1088/0957-4484/15/11/034 (2004).
11
https://zh.wikipedia.org/zh-tw/%E7%A2%B3%E7%BA%B3%E7%B1%B3%E7
%AE%A1#/media/File:CNTnames.png
12 Ahmad, K., Pan, W. & Shi, S.-L. Electrical conductivity and dielectric properties
of multiwalled carbon nanotube and alumina composites. Applied Physics
Letters 89, 133122, doi:10.1063/1.2357920 (2006).
13 Wang, Q., Dai, J., Li, W., Wei, Z. & Jiang, J. The effects of CNT alignment on
electrical conductivity and mechanical properties of SWNT/epoxy
nanocomposites. Composites Science and Technology 68, 1644-1648,
doi:10.1016/j.compscitech.2008.02.024 (2008).
14 Aguilar, J. O. Influence of carbon nanotube clustering on the electrical
68
conductivity of polymer composite films. eXPRESS Polymer Letters 4, 292-299,
doi:10.3144/expresspolymlett.2010.37 (2010).
15 Kim, C. H. et al. Magnetic anisotropy of vertically aligned α-Fe[sub 2]O[sub 3]
nanowire array. Applied Physics Letters 89, 223103, doi:10.1063/1.2393165
(2006).
16 Mitra, S., Das, S., Mandal, K. & Chaudhuri, S. Synthesis of a α-Fe2O3
nanocrystal in its different morphological attributes: growth mechanism,
optical and magnetic properties. Nanotechnology 18, 275608,
doi:10.1088/0957-4484/18/27/275608 (2007).
17 Cao, S.-W. & Zhu, Y.-J. Hierarchically nanostructured α-Fe2O3 hollow spheres:
preparation, growth mechanism, photocatalytic property, and application in
water treatment. The Journal of Physical Chemistry C 112, 6253-6257 (2008).
18 Zhao, Y. M. et al. Growth and characterization of iron oxide
nanorods/nanobelts prepared by a simple iron-water reaction. Small 2,
422-427, doi:10.1002/smll.200500347 (2006).
19 Wu, C., Yin, P., Zhu, X., OuYang, C. & Xie, Y. Synthesis of hematite (α-Fe2O3)
nanorods: diameter-size and shape effects on their applications in magnetism,
lithium ion battery, and gas sensors. The Journal of Physical Chemistry B 110,
17806-17812 (2006).
20 Sun, Y., Zhang, J., Huang, T., Liu, Z. & Yu, A. Fe 2 O 3/CNTs composites as
anode materials for lithium-ion batteries. Int. J. Electrochem. Sci 8, 2918-2931
(2013).
21 Kulal, P. M., Dubal, D. P., Lokhande, C. D. & Fulari, V. J. Chemical synthesis of
Fe2O3 thin films for supercapacitor application. Journal of Alloys and
Compounds 509, 2567-2571, doi:10.1016/j.jallcom.2010.11.091 (2011).
22 Duret, A. & Grätzel, M. Visible light-induced water oxidation on mesoscopic
α-Fe2O3 films made by ultrasonic spray pyrolysis. The Journal of Physical
Chemistry B 109, 17184-17191 (2005).
23 Zhou, G. et al. A nanosized Fe2O3 decorated single-walled carbon nanotube
membrane as a high-performance flexible anode for lithium ion batteries.
Journal of Materials Chemistry 22, 17942, doi:10.1039/c2jm32893c (2012).
24 Yu, W.-J., Hou, P.-X., Li, F. & Liu, C. Improved electrochemical performance of
Fe2O3 nanoparticles confined in carbon nanotubes. Journal of Materials
Chemistry 22, 13756, doi:10.1039/c2jm31442h (2012).
25 Wang, Z., Ma, C., Wang, H., Liu, Z. & Hao, Z. Facilely synthesized Fe2O3–
graphene nanocomposite as novel electrode materials for supercapacitors
with high performance. Journal of Alloys and Compounds 552, 486-491,
doi:10.1016/j.jallcom.2012.11.071 (2013).
69
26 Ye, Y. et al. Core–shell structure carbon coated ferric oxide (Fe2O3@C)
nanoparticles for supercapacitors with superior electrochemical performance.
Journal of Alloys and Compounds 639, 422-427,
doi:10.1016/j.jallcom.2015.03.113 (2015).
27 Peratt, A. L. Advances in numerical modeling of astrophysical and space
plasmas. Astrophysics and space science 242, 93-163 (1996).
28 Langmuir, I. Oscillations in ionized gases. Proceedings of the National
Academy of Sciences of the United States of America 14, 627 (1928).
29 Hsu, Y.-w., Yang, Y.-j., Wu, C.-y. & Hsu, C.-c. Downstream Characterization of
an Atmospheric Pressure Pulsed Arc Jet. Plasma Chemistry and Plasma
Processing 30, 363-372, doi:10.1007/s11090-010-9224-9 (2010).
30 Hsu, C.-C. & Wu, C.-Y. Electrical characterization of the glow-to-arc transition
of an atmospheric pressure pulsed arc jet. Journal of Physics D: Applied
Physics 42, 215202, doi:10.1088/0022-3727/42/21/215202 (2009).
31 .
32 Wünscher, S. et al. Localized atmospheric plasma sintering of inkjet printed
silver nanoparticles. Journal of Materials Chemistry 22, 24569-24576 (2012).
33 Chang, H. et al. Dye-sensitized solar cells with nanoporous TiO2 photoanodes
sintered by N2 and air atmospheric pressure plasma jets with/without
air-quenching. Journal of Power Sources 251, 215-221,
doi:10.1016/j.jpowsour.2013.11.051 (2014).
34
https://zh.wikipedia.org/zh-tw/%E5%8F%8C%E7%94%B5%E5%B1%82%E7
%94%B5%E5%AE%B9%E5%99%A8#/media/File:Supercapacitor_diagram.svg
35 Kim, C. & Yang, K. Electrochemical properties of carbon nanofiber web as an
electrode for supercapacitor prepared by electrospinning. Applied Physics
Letters 83, 1216-1218 (2003).
36 Zhao, X., Johnston, C. & Grant, P. S. A novel hybrid supercapacitor with a
carbon nanotube cathode and an iron oxide/carbon nanotube composite
anode. Journal of Materials Chemistry 19, 8755-8760 (2009).
37 Ito, S. et al. Fabrication of thin film dye sensitized solar cells with solar to
electric power conversion efficiency over 10%. Thin Solid Films 516,
4613-4619, doi:10.1016/j.tsf.2007.05.090 (2008).
38 .
39 Xiang, L., Xiang, Y., Wen, Y. & Wei, F. Formation of CaCO3 nanoparticles in the
presence of terpineol. Materials Letters 58, 959-965,
doi:10.1016/j.matlet.2003.07.034 (2004).
70
40 .
41 Teschke, M., Kedzierski, J., Finantu-Dinu, E., Korzec, D. & Engemann, J.
High-speed photographs of a dielectric barrier atmospheric pressure plasma
jet. Plasma Science, IEEE Transactions on 33, 310-311 (2005).
42 Hsu, C.-c., Wu, C.-y., Chen, C.-w. & Cheng, W.-c. Mode Transition of an
Atmospheric Pressure Arc Plasma Jet Sustained by Pulsed DC Power. Japanese
Journal of Applied Physics 48, 076002, doi:10.1143/jjap.48.076002 (2009).
43 Lien, S.-T. et al. Atmospheric pressure plasma jet annealed ZnO films for
MgZnO/ZnO heterojunctions. Journal of Physics D: Applied Physics 46, 075202
(2013).
44 http://www.cleanroom.byu.edu/metal.phtml.
45
http://serc.carleton.edu/research_education/geochemsheets/techniques/S
EM.html.
46 http://www.microscopy.ethz.ch/sem_detectors.htm.
47 http://pe.taylorjl.net/PE_Blog/?p=392.
48 Iwasita, T. & Pastor, E. A DEMS and FTIR spectroscopic investigation of
adsorbed ethanol on polycrystalline platinum. Electrochimica Acta 39,
531-537 (1994).
49 Desai, J., Alexander, K. & Riga, A. Characterization of polymeric dispersions of
dimenhydrinate in ethyl cellulose for controlled release. International journal
of pharmaceutics 308, 115-123 (2006).
50 Oh, S. Y., Yoo, D. I., Shin, Y. & Seo, G. FTIR analysis of cellulose treated with
sodium hydroxide and carbon dioxide. Carbohydrate Research 340, 417-428
(2005).
51 Misra, A., Tyagi, P. K., Singh, M. K. & Misra, D. FTIR studies of nitrogen doped
carbon nanotubes. Diamond and related materials 15, 385-388 (2006).


reference for "Microstructural, electrical, and optical properties of sol-gel derived HfMgZnO thin films"
[1] U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J Appl Phys, 98 (2005) 041301.
[2] J.H. Lim, C.K. Kang, K.K. Kim, I.K. Park, D.K. Hwang, S.J. Park, Advanced Materials, 18 (2006) 2720-2724.
[3] S.J. Jiao, Z.Z. Zhang, Y.M. Lu, D.Z. Shen, B. Yao, J.Y. Zhang, B.H. Li, D.X. Zhao, X.W. Fan, Z.K. Tang, Appl Phys Lett, 88 (2006) 031911.
[4] P.F. Carcia, R.S. McLean, M.H. Reilly, Appl Phys Lett, 88 (2006) 123509.
[5] S.-H.K. Park, C.-S. Hwang, H.Y. Jeong, H.Y. Chu, K.I. Cho, Electrochemical and Solid-State Letters, 11 (2008) H10.
[6] Y.S. Tsai, J.Z. Chen, Ieee T Electron Dev, 59 (2012) 151-158.
[7] I.C. Cheng, B.S. Wang, H.H. Hou, J.Z. Chen, ECS Transactions, 50 (2013) 83-93.
[8] C.H. Tsai, Y.S. Li, I.C. Cheng, J.Z. Chen, Plasma Processes and Polymers, 40 (2014) 89-95.
[9] J. Aranovich, Journal of Vacuum Science and Technology, 16 (1979) 994.
[10] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa, Appl Phys Lett, 72 (1998) 2466-2468.
[11] A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda, Y. Segawa, Appl Phys Lett, 75 (1999) 980-982.
[12] A. Ohtomo, R. Shiroki, I. Ohkubo, H. Koinuma, M. Kawasaki, Appl Phys Lett, 75 (1999) 4088-4090.
[13] S. Choopun, R.D. Vispute, W. Yang, R.P. Sharma, T. Venkatesan, H. Shen, Appl Phys Lett, 80 (2002) 1529-1531.
[14] H. Tampo, H. Shibata, K. Maejima, A. Yamada, K. Matsubara, P. Fons, S. Kashiwaya, S. Niki, Y. Chiba, T. Wakamatsu, H. Kanie, Appl Phys Lett, 93 (2008) 202104.
[15] A. Tsukazaki, S. Akasaka, K. Nakahara, Y. Ohno, H. Ohno, D. Maryenko, A. Ohtomo, M. Kawasaki, Nature Materials, 9 (2010) 889-893.
[16] H. Tampo, H. Shibata, K. Matsubara, A. Yamada, P. Fons, S. Niki, M. Yamagata, H. Kanie, Appl Phys Lett, 89 (2006) 132113.
[17] H.A. Chin, I.C. Cheng, C.I. Huang, Y.R. Wu, W.S. Lu, W.L. Lee, J.Z. Chen, K.C. Chiu, T.S. Lin, J Appl Phys, 108 (2010) 054503.
[18] H.A. Chin, I.C. Cheng, C.K. Li, Y.R. Wu, J.Z. Chen, W.S. Lu, W.L. Lee, J Phys D Appl Phys, 44 (2011) 455101.
[19] S.T. Lien, H.C. Li, Y.J. Yang, C.C. Hsu, I.C. Cheng, J.Z. Chen, Journal of Physics D: Applied Physics, 46 (2013) 075202.
[20] H.Z. Wu, J. Liang, G.F. Jin, Y.F. Lao, T.N. Xu, Ieee T Electron Dev, 54 (2007) 2856-2859.
[21] T.H. Wu, J.Z. Chen, C.C. Hsu, I.C. Cheng, J Phys D Appl Phys, 47 (2014) 255102.
[22] C.-H. Li, J.-Z. Chen, I. Cheng, J Appl Phys, 114 (2013) 084503.
[23] C.H. Li, J.Z. Chen, Journal of Alloys and Compounds, 601 (2014) 223-230.
[24] C.H. Ahn, J.H. Kim, H.K. Cho, J Electrochem Soc, 159 (2012) H384-H387.
[25] W.S. Kim, Y.K. Moon, K.T. Kim, S.Y. Shin, B. Du Ahn, J.H. Lee, J.W. Park, Thin Solid Films, 519 (2011) 6849-6852.
[26] W.S. Kim, Y.K. Moon, K.T. Kim, S.Y. Shin, B.D. Ahn, J.H. Lee, J.W. Park, Thin Solid Films, 519 (2011) 5161-5164.
[27] W.S. Kim, Y.K. Moon, K.T. Kim, S.Y. Shin, B. Du Ahn, J.H. Lee, J.W. Park, Electrochem Solid St, 13 (2010) H295-H297.
[28] C.H. Ahn, M.G. Yun, S.Y. Lee, H.K. Cho, Ieee T Electron Dev, 61 (2014) 73-78.
[29] X. Zhou, Y.-a. Zhang, W. Shi, T. Guo, Journal of Materials Science: Materials in Electronics, 24 (2012) 362-368.
[30] S.B. Zhu, Y. Geng, H.L. Lu, Y. Zhang, Q.Q. Sun, S.J. Ding, D.W. Zhang, Journal of Alloys and Compounds, 577 (2013) 340-344.
[31] Y. Geng, Z.-Y. Xie, W. Yang, S.-S. Xu, Q.-Q. Sun, S.-J. Ding, H.-L. Lu, D.W. Zhang, Surface and Coatings Technology, 232 (2013) 41-45.
[32] D.-S. Han, D.-Y. Moon, Y.-J. Kang, J.-H. Park, J.-W. Park, Current Applied Physics, 13 (2013) S98-S102.
[33] D.-S. Han, J.-H. Park, Y.-J. Kang, J.-W. Park, Journal of Electronic Materials, 42 (2013) 2470-2477.
[34] M. Ahmad, E. Ahmed, Z. Hong, Z. Iqbal, N. Khalid, T. Abbas, I. Ahmad, A. Elhissi, W. Ahmed, Ceramics International, 39 (2013) 8693-8700.
[35] M. Ahmad, Z. Iqbal, Z. Hong, J. Yang, Y. Zhang, N. Khalid, E. Ahmed, Integrated Ferroelectrics, 145 (2013) 108-114.
[36] C.H. Li, H. Chung, J.Z. Chen, I.C. Cheng, Thin Solid Films, 570 Part B (2014) 457-463.
[37] S.J. Kwon, J.H. Park, J.G. Park, Phys Rev E, 71 (2005) 011604.
[38] S.T. Lien, J.Z. Chen, Y.J. Yang, C.C. Hsu, I.C. Cheng, Ceram Int, 40 (2014) 2707-2715.
[39] B.C. Mohanty, Y.H. Jo, D.H. Yeon, I.J. Choi, Y.S. Cho, Appl Phys Lett, 95 (2009) 062103.
[40] Y.F. Li, B. Yao, Y.M. Lu, C.X. Cong, Z.Z. Zhang, Y.Q. Gai, C.J. Zheng, B.H. Li, Z.P. Wei, D.Z. Shen, X.W. Fan, L. Xiao, S.C. Xu, Y. Liu, Appl Phys Lett, 91 (2007) 021915.
[41] Y.F. Li, B. Yao, Y.M. Lu, Y.Q. Gai, C.X. Cong, Z.Z. Zhang, D.X. Zhao, J.Y. Zhang, B.H. Li, D.Z. Shen, X.W. Fan, Z.K. Tang, J Appl Phys, 104 (2008) 083516.
[42] R. Romero, D. Leinen, E.A. Dalchiele, J.R. Ramos-Barrado, F. Martín, Thin Solid Films, 515 (2006) 1942-1949.
[43] D.C. Agarwal, R.S. Chauhan, A. Kumar, D. Kabiraj, F. Singh, S.A. Khan, D.K. Avasthi, J.C. Pivin, M. Kumar, J. Ghatak, P.V. Satyam, J Appl Phys, 99 (2006) 123105.
[44] P. Scherrer, Nachr. Gottingen, 2 (1918) 98.
[45] A.L. Patterson, Phys Rev, 56 (1939) 978-982.
[46] B.D. Cullity, Elements of X-Ray Diffraction Addision-Wesley, Philippines, 1978.
[47] S. Maniv, W.D. Westwood, E. Colombini, J Vac Sci Technol, 20 (1982) 162-170.
[48] R. Ghosh, D. Basak, S. Fujihara, J Appl Phys, 96 (2004) 2689-2692.
[49] S. Mandal, R.K. Singha, A. Dhar, S.K. Ray, Mater Res Bull, 43 (2008) 244-250.
[50] Z. Fu, Z.G. Yin, N.F. Chen, X.W. Zhang, H. Zhang, Y.M. Bai, J.L. Wu, Phys Status Solidi-R, 6 (2012) 37-39.
[51] L.P. Peng, L. Fang, X.F. Yang, Y.J. Li, Q.L. Huang, F. Wu, C.Y. Kong, Journal of Alloys and Compounds, 484 (2009) 575-579.
[52] A. Mahmood, N. Ahmed, Q. Raza, T.M. Khan, M. Mehmood, M.M. Hassan, N. Mahmood, Phys Scripta, 82 (2010) 065801.
[53] B.K. Sharma, N. Khare, J Phys D Appl Phys, 43 (2010) 465402.
[54] R. Cebulla, R. Wendt, K. Ellmer, J Appl Phys, 83 (1998) 1087-1095.
[55] R.A. Street, Hydrogenated amorphous silicon, Cambridge University Press, New York, 1991.
[56] J. Tauc, Plenum, London-New York, 1974.
[57] Y. Nakamura, K. Watanabe, Y. Fukuzawa, M. Ichikawa, Appl Phys Lett, 87 (2005) 133119.
[58] K.-F. Lin, H.-M. Cheng, H.-C. Hsu, L.-J. Lin, W.-F. Hsieh, Chemical Physics Letters, 409 (2005) 208-211.
[59] K.-F. Lin, H.-M. Cheng, H.-C. Hsu, W.-F. Hsieh, Appl Phys Lett, 88 (2006) 263117.
[60] N.F. Borrelli, D.W. Hall, H.J. Holland, D.W. Smith, J Appl Phys, 61 (1987) 5399.
[61] Y. Gu, I.L. Kuskovsky, M. Yin, S. O’Brien, G.F. Neumark, Appl Phys Lett, 85 (2004) 3833.
[62] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, Nature materials, 4 (2004) 42-46.
[63] Y. Ryu, T.-S. Lee, J.A. Lubguban, H.W. White, B.-J. Kim, Y.-S. Park, C.-J. Youn, Appl Phys Lett, 88 (2006) 241108.
[64] S. Cho, J. Ma, Y. Kim, Y. Sun, G.K.L. Wong, J.B. Ketterson, Appl Phys Lett, 75 (1999) 2761.
[65] S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang, S.J. Chua, J Appl Phys, 98 (2005) 013505.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top