跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 22:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何智昇
研究生(外文):Chih-Sheng Ho
論文名稱:新穎穿戴式光學裝置用以連續監測眼壓
論文名稱(外文):A Novel Wearable Optical Device for Continuously Monitoring Intraocular Pressure
指導教授:王倫
指導教授(外文):Wang Lon
口試委員:施文彬王一中
口試日期:2015-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:96
中文關鍵詞:青光眼隱形眼鏡眼壓
外文關鍵詞:GlaucomaIntraocular pressureContact Lens
相關次數:
  • 被引用被引用:0
  • 點閱點閱:270
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
連續眼睛曲率變化被稱為眼壓,對於青光眼的患者24小時的連續監控眼睛曲率變化為重要的診斷方法,可是通常眼壓的高峰和低峰值在觀察的當下不一定量的到,所以需要有連續觀察裝置。因此,連續的眼壓監控是普遍用於調控抗青光眼劑的劑量和頻率的必要條件。

在論文中,我們提出一個完全被動的,非侵入性的光學裝置,且可連續監控眼壓。此裝置是利用隱形眼鏡上做結構,再利用兩層疊合形成莫爾條紋進而量測到眼角膜的曲率變化。我們的裝置靈敏度可達到1個毫米汞柱而量測範圍可到20毫米汞柱,藉由我們所拍出的莫爾條紋可分析出1毫米汞柱條紋間距會產生暗紋縮小週期變化。與其他現有眼壓量測裝置去做比較的話,我們的裝置較單純,被動式,沒有嵌入電路,並能用於監測青光眼患者的眼壓變化。


Continuous ocular dimensional profile, intraocular pressure (IOP), has been known as an important diagnostic method for patients to measure glaucoma over 24hours, nocturnally and diurnally, as well as the number of peaks and troughs diurnally and nocturnally. Consequently, continuous IOP monitoring is required for adjusting the dosage and frequency of anti-glaucomatous agents for each individual.
   In this work, a fully passive, non-invasive optical device is proposed for continuous IOP monitoring. The device is composed of a contact lens sensor with double-layered structure which utilizes moiré fringe to characterize the variation of the cornea curvature. Unprecedentedly our device is able to reach 1 mmHg sensitivity over a wide range of 20 mmHg at an increase of spatial period to from the resultant moiré fringe. Compared to other contact lens-based sensors, our device is simple, passive, no imbedded electric circuit, and capable for monitoring the IOP variability of glaucoma patients.


誌謝
Abstract (Chi)
Abstract (Eng)
Statement of Contributions
LIST OF FIGURES
LIST OF TABLES
Chapter 1 Introduction
1.1 How Intraocular effect glaucoma…………………………..1
1.2 Materials use for contact lens………………………………5
1.2-1 2-hydroxyethyl methacrylate (HEMA)…………….5
1.2-2 polydimethylsiloxane (PDMS)……………………..5
1.3 Moiré pattern introduction………………………………….7
Chapter 2 Review of Existing IOP Sensors
2.1 Tonometry………………………………………………... 11
2.2 MEMS intraocular sensor…………………………………13
2.3 Microfluidic intraocular pressure sensor………………….15
2.4 Implanted IOP sensor……………………………………..16
2.5 Sensitivity comparison among IOP sensors………………17
Chapter 3 Sensor Materials and Experiment Setup
3.1 Materials of our contact lens……………………………...21
3.1-1 First layer material HEMA…………………………..21
3.1-2 Second layer material PDMS………………………..22
3.2 Fabrication of contact lens mold………………………….24
3.2-1 Measure contact lens mold by Laser Confocal Scanning Microscope ………………………………..24
3.3 Artificial eye fabrication and IOP testing………………….34
3.3-1 The purpose of making artificial eyes……………….34
3.3-2 Measured radius of curvature variations of artificial eyes…………………………………………………...36
3.3-3 How to fabricate an artificial eyes…………………...39
3.4 Using porcine eyes for IOP increase measurement………...46
3.4-1 Measured radius variation of a porcine eye…………46
3.5 IOP contact lens sensor design……………………………..50
3.6 Moiré fringes visibility……………………………………..53
Chapter 4 Contact Lens Fabrication and IOP Measurement Results
4.1 Fabrication process of concentric circle grating contact lens………………………………………………………...56
4.2 Moiré Equation…………………………………………….60
4.3 Variation of Radius curvature with IOP in an artificial eye’s IOP………………………………………………………...63
4.4 IOP sensor measurement results based on an artificial eye..64
4.5 IOP sensor measurement results based on porcine eyes……73
4.6 Moiré fringe characterization for small IOP variation……..76
Chapter 5 Simulated IOP Contact Sensor
5.1 Simulation tool: Trace pro………………………………...79
5.1-1 Modeling of lens mold and eye mold………………….79
5.1-2 Using ray tracing and irradiance/illuminance maps to simulate moiré fringe’s variation……………………….83
Chapter 6 Conclusions and Future works……………………….89
References ……………………………………………………………...92



[1] Hattenhauer MG, Johnson DH, Ing HH, Herman DC, Hodge DO, Yawn BP, et al. The probability of blindness from open angle glaucoma. Ophthalmology 1998;105:2099–104.
[2] Draeger, J. and Kaefer, I. “A contribution to the history of tonometry. The first impression tonometer (A. v. Graefe, 1862)],“ Klinische Monatsblatter fur Augenheilkunde und fur augenarztliche Fortbildung,1959, 135, pp. 846-52.
[3] Maklakoff C. L''ophtalmomérie, Arch Ophthalmol (Paris), 1885, 5, pp.159–165.
[4] Goldmann, H. and Schmidt, T. Über Applanationstonometrie, Ophthalmologica, 1957, 134, pp.221-42.
[5] Greene, M. and Gilman, B. “Intraocular pressure measurement with instrumented contact lenses,” Investigative ophthalmology & visual science, 1974, Vol. 13, no. 4, pp. 299-302.
[6] Leonardi, M., Leuenberger, P., Bertrand, D., Bertsch, A., Renaud, P. “A soft contact lens with a MEMS strain gage embedded for intraocular pressure monitoring,” 12th International Conference Solid-State Sensors, Actuators and Microsystems, Boston, 8-12 June 2003, Vol. 2, pp. 1043-1046.
[7] Leonardi, M., Leuenberger, P., Bertrand, D., Bertsch, A., Renaud, P.“First steps toward noninvasive intraocular pressure monitoring with a sensing contact lens,” Investigative ophthalmology & visual science,2004. Vol. 45, no. 9.
[8] Isaac Amidror,Roger D. Hersch,Victor Ostromoukhov. “Spectral Analysis and Minimization of Moiré Patterns in Colour Separation” Journal of Electronic Imaging, 3(3), pages 295-317, 1994.
[9] Elliot M. Kirstein, Ahmed Elsheikh and Pinakin Gunvant. “Tonometry – Past, Present and Future” Glaucoma – Current Clinical and Research Aspects.
[10]Chien-Kaitseng,Yu-ChiehHuang,Shang-Wei,Tsai,Guan-Ting,Yeh,Chung-Hao Chang.Design and fabricate a contact lens sensor with a micro-inductor embedded for intraocular pressure monitoring. 2012 ieee, 978-1-4577-1767-3.


[11] Ismail E Araci, Baolong Su, Stephen R Quake ,Yossi Mandel. “An implantable microfluidic device for self-monitoring of intraocular pressure” nature medicine, September 2014,number 9,volume 20.
[12]Po-jui chen, Saloomeh Saati, Rohit Varma. “Wireless intraocular pressure sensing using microfabricated minimally invasive flexible-coiled lc sensor implant”journal of microelectromechanical systems, vol. 19, no. 4, august 2010.
[13] Guo-Zhen Chen, Ion-Seng Chan, David C.C. Lam. “Capacitive contact lens sensor for continuous non-invasiveintraocular pressure monitoring”. Sensors and Actuators A ,2013,112– 118.
[14] Florian Schneider, Jan Draheim, Robert Kamberger, Ulrike Wallrabe. “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS.” Sensors and Actuators A: Physical, Volume 151, Issue 2, 29 April 2009, Pages 95–99.
[15] S.R. Quake, A. Schere. “From micro- to nanofabrication with soft materials”Science, 290 (2000), pp. 1536–1540.
[16] M.A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, S.R. Quake
“Monolithic microfabricated valves and pumps by multilayer soft lithography”Science, 288 (2000), pp. 113–116.
[17] T. Thorsen, S.J. Maerkl, S.R. Quake.“Microfluidic large-scale integration.”Science, 298 (2002), pp. 580–584.
[18] K. Hosokawa, R. Maeda“A pneumatically-actuated three-way microvalve fabricated with polydimethylsiloxane using the membrane transfer technique.” J. Micromech. Microeng., 10 (2000), pp. 415–420.
[19] D.C. Duffy, O.J. Schueller, S.T. Brittain, G.M. Whitesides
“Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow”J. Micromech. Microeng., 9 (1999), pp. 211–217.
[20] A. Werber, H. Zappe.“Tunable membrane-based pneumatic micro-mirrors.” J. Opt. A: Pure Appl. Opt., 8 (2006), pp. 313–317.
[21] F. Schneider, C. Müller, U. Wallrabe.“A low cost adaptive silicone membrane lens” J. Opt. A: Pure Appl. Opt., 10 (2008), p. 044002.
[22] Q. Yang, P. Kobrin, C. Seabury, S. Narayanaswamy, W. Christian
“Mechanical modeling of fluid-driven polymer lenses” Appl. Opt., 47 (2008), pp. 3658–3668.
[23] J. Chen, W. Wang, J. Fang, K. Varahramyan.”Variable-focusing microlens with microfluidic chip.”J. Micromech. Microeng., 14 (2004), pp. 675–680.
[24] K.-H. Jeong, G.L. Liu, N. Chronis, L.P. Lee“Tunable microdoublet lens array.” Opt. Express, 12 (2004), pp. 2494–2500.
[25] D.-Y. Zhang, N. Justis, Y.-H. Lo“Integrated fluidic adaptive zoom lens” Opt. Lett., 29 (2004), pp. 2855–2857.
[26] H.-K. Lee, S.-I. Chang, E. Yoon“A flexible polymer tactile sensor: fabrication and modular expandability for large area deployment.”
J. Microelectromech. Syst., 15 (2006), pp. 1681–1686.
[27] J.-S. Heo, J.-H. Chung, J.-J. Le“Tactile sensor arrays using fiber Bragg grating sensors.”Sensors Actuators A, 126 (2006), pp. 312–317
[28] N. Barie, M. Bücking, M. Rapp“A novel electronic nose based on miniaturized SAW sensor arrays coupled with SPME enhanced headspace-analysis and its use for rapid determination of volatile organic compounds in food quality monitoring.”Sensors Actuators B, 114 (2006), pp. 482–488.
[29] H. Kudo, T. Sawada, E. Kuzawa, H. Yoshida, Y. Iwasaki, K. Mitsubayashi.“A flexible and wearable glucose sensor based on functional polymers with soft-MEMS techniques” Biosens. Bioelectron., 22 (2006), pp. 558–562.
[30] Ismail E Araci, Baolong SuStephen ,R Quake & Yossi Mandel
“An implantable microfluidic device for self-monitoring
of intraocular pressure”Nature medicine, SEPTEMBER 2014,volume 20.
[31] C.-K. Tseng, Y.-C. Huang, S.-W. Tsai, G.-T. Yeh, C.-H. Chang, J.-C. Chiou, Designand fabricate a contact lens sensor with a micro-inductor embedded for intraoc-ular pressure monitoring, Sensors IEEE2012 (2012) 1–4.
[32] P.-J. Chen, S. Saati, R. Varma, M.S. Humayun, Y.-C. Tai, Wireless intraocular pres-sure sensing using microfabricated minimally invasive flexible-coiled LC sensorimplant, J. Microelectromech. Syst. 19 (2010) 721–734.
[33] M. Leonardi, E.M. Pitchon, A. Bertsch, P. Renaud, A. Mermoud, Wireless contactlens sensor for intraocular pressure monitoring: assessment on enucleated pigeyes, Acta Ophthalmol. (Copenh.) 87 (2009) 433–437.
[34] Guo-Zhen Chen, Ion-Seng Chan, David C.C. Lam“Capacitive contact lens sensor for continuous non-invasive intraocular pressure monitoring”Sensors and Actuators A: Physical,2013.
[35] P. Auvray, L. Rousseau, G. Lissorgues, F. Soulier , O. Potin , S. Bernard , F. Dieuleveult ,E. Scorsone , P. Bergonzo , L. Chicaud, S. Picaud , J.A. Sahel“A passive pressure sensor for continuously measuring the intraocularpressure in glaucomatous patients”
IRBM 33 (2012) 117–122
[36] William r. hendee,Peter n.t. wells“the perception of visual information”springer.
[37]Mansouri, K., Medeiros, F.A., Tafreshi, A. & Weinreb, R.N. “Continuous 24-hour monitoring of intraocular pressure patterns with a contact lens sensor: safety, tolerability, and reproducibility in patients with glaucoma.” Arch Ophthalmol 130, 1534-1539 (2012).
[38] Mansouri, K. & Weinreb, R.N. “Meeting an unmet need in glaucoma: continuous 24-h monitoring of intraocular pressure.”
Expert Rev Med Devices 9, 225-231 (2012).
[39] Stangel, K., et al. “A programmable intraocular CMOS pressure sensor system implant.” Solid-State Circuits, IEEE Journal of 36, 1094-1100 (2001).



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top