跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 07:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張耀宇
研究生(外文):Yao-Yu Chang
論文名稱:非破壞性高折射率差光纖直徑量測
論文名稱(外文):Non-destructive diameter measurement for high refractive index contrast fibers
指導教授:王倫
指導教授(外文):Lon A. Wang
口試委員:黃鼎偉蘇國棟
口試委員(外文):Ding-wei HuangGuo-Dung J. Su
口試日期:2015-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:71
中文關鍵詞:高折射率差光纖矽核光纖直徑量測散射條紋法
外文關鍵詞:High refractive index contrast fiberSi-cored fiberdiameter measurementscattering pattern method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:76
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高折射率差光纖,包含了新型半導體纖芯光纖等研究,近年來引起了越來越多的科學家的興趣與關注。但由於這些半導體光纖纖芯與披覆層的折射率差異相當大以及纖芯的折射率帶有虛數項的關係,其纖芯的光學直徑量測一直是一個高挑戰性的課題。於此,我們展示了一個簡單,新穎和非破壞性的方法可以同時測量高折射率差光纖(Δn> 0.06)纖芯與披覆層的直徑。這種方法在未來有可能發展成即時直徑量測系統的可能性。在測量結果上,目前使用這種方法測量纖芯與披覆層的直徑的準確度在折射率油光纖(Δn= 0.36)時可以達到97%,以及在矽核光纖(Δn= 2.97 + 0.88i)時可以達到96%。在矽核光纖時,披覆層直徑目前可以測量自30微米至15微米。當對應的光纖批覆層直徑為15微米時,其有效纖芯直徑的測量範圍可以從6.3微米測量至9.3微米。根據模擬此量測方法未來有潛力可以量測披覆層直徑自126微米至15微米的矽核光纖。此光學量測方法比用光學顯微鏡方法測量纖芯直徑更好是因為根據斯涅爾定律的結果,纖芯直徑在光學顯微鏡圖像上的量測結果是不可靠且不準確的。這種測量方法目前可適用於矽核光纖(Δn= 2.97 + 0.88i)和折射率差範圍從1.52至1.82的高折射率差光纖。但根據模擬,此光學量測方法應能量測折射率差範圍從1.52至4.15的高折射率差光纖,只可惜目前沒有市售的從1.82至4.15折射率範圍的折射率油來做實驗驗證。此外由於矽核光纖的纖芯複數折射率太大的關係,會導致光傳播過不同類型纖芯的矽核光纖的時候,其散射條紋完全一致。因此此量測方法可以同時應用在量測不同類型的矽核光纖(例如amorphous 矽核光纖以及single crystalline的矽核光纖)。

The research of high refractive index contrast fibers, including novel semiconductor-core fibers has interested more and more scientists recently. But the diameter optical measurement of these fibers is a difficult challenge due to its high refractive index contrast and imaginary terms of core refractive index. We demonstrate a simple, novel and non-destructive method to measure both core and cladding diameters of high refractive contrast fibers (Δn>0.06) simultaneously which has not been reported. This method has potential to be a real-time measurement in the future. As the result of measurement, the accuracy of diameter measurement using this method can reach 97% for index-oil-cored-fibers (Δn=0.36) and 96% for silicon cored fibers (Δn=2.97+0.88i) currently. For silicon cored fibers, the effective core diameter measurement range can be from 6.3μm to 9.3μm when the corresponding cladding diameter is 15μm. According to the simulation, this method may suitable to measure cladding diameter ranging from 126 to 15μm for Si-cored fiber. It’s better than Optical microscope (OM) examination since core diameter in the OM picture is inaccurate due to Snell’s law. This measurement method is suitable for silicon cored fibers (Δn=2.97+0.88i) and high refractive contrast fibers with core refractive indices ranging from 1.52 to 1.82 due to the availability of refractive liquid oil ranging from 1.82 to 4.15. Besides, this method can be used in measuring diameters of different types of silicon cored fiber in the same database.

口試委員會審定書………………………………………………………………………i
誌謝 ii
中文摘要 iiii
ABSTRACT iv
Statement of Contributions v
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES xii
Chapter 1 Motivation and Introduction 1
1-1 Motivation 1
1-2 Organization of the Thesis 4
Chapter 2 Principle & Setup of Diameter Measurement 5
2-1 Principle of Scattering 5
2-2 Experimental Setup and Measurement Scheme 13
Chapter 3 Fabrication of High Refractive Index Contrast Fibers 15
3-1 Overview 15
3-2 Fabrication Process of Index-Oil-Cored-Fibers 16
3-3 Fabrication Process of Si-cored Fibers 23
Chapter 4 Results and Discussion 25
4-1 Comparison between experimental and simulation results 25
4-2 Single Layer Cylinder Measurement 28
4-3 Index-oil-cored-fiber Measurement 33
4-4 Si-cored Fiber Diameter Measurement 38
4-5 Measurement Results and Discussion 43
4-6 Discussion of the Measurement Limits 51
Chapter 5 Conclusions and Future Works 65
5-1 Conclusions 65
5-2 Future works 67
References……………………………………………………………………………...68



[1]M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, et al., "Metal–insulator–semiconductor optoelectronic fibres," Nature, vol. 431, pp. 826-829, 2004.
[2]H. Tyagi, M. Schmidt, L. Prill Sempere, and P. Russell, "Optical properties of photonic crystal fiber with integral micron-sized Ge wire," Optics express, vol. 16, pp. 17227-17236, 2008.
[3]P. Mehta, M. Krishnamurthi, N. Healy, N. F. Baril, J. R. Sparks, P. J. Sazio, et al., "Mid-infrared transmission properties of amorphous germanium optical fibers," Applied Physics Letters, vol. 97, pp. 071117-1-071117-3, 2010.
[4]J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. Sazio, et al., "Zinc selenide optical fibers," Advanced Materials, vol. 23, pp. 1647-1651, 2011.
[5]A. C. Peacock, J. R. Sparks, and N. Healy, "Semiconductor optical fibres: progress and opportunities," Laser & Photonics Reviews, vol. 8, pp. 53-72, 2014.
[6]J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, et al., "Silicon optical fiber," Optics express, vol. 16, pp. 18675-18683, 2008.
[7]A. Gumennik, L. Wei, G. Lestoquoy, A. M. Stolyarov, X. Jia, P. H. Rekemeyer, et al., "Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities," Nature communications, vol. 4, pp. 2216-1-2216-8, 2013.
[8]B. R. Jackson, P. Sazio, and J. V. Badding, "Single-crystal semiconductor wires integrated into microstructured optical fibers," Advanced Materials, vol. 20, pp. 1135-1140, 2008.
[9]B. Scott, K. Wang, V. Caluori, and G. Pickrell, "Fabrication of silicon optical fiber," Optical Engineering, vol. 48, pp. 100501-1-100501-3, 2009.
[10]R. He, T. D. Day, M. Krishnamurthi, J. R. Sparks, P. J. Sazio, V. Gopalan, et al., "Silicon p‐i‐n Junction Fibers," Advanced Materials, vol. 25, pp. 1461-1467, 2013.
[11]F. Martinsen, B. Smeltzer, M. Nord, T. Hawkins, J. Ballato, and U. Gibson, "Silicon-core glass fibres as microwire radial-junction solar cells," Scientific reports, vol. 4, pp. 6283-1-6283-7, 2014.
[12]P. Mehta, N. Healy, T. Day, J. Sparks, P. Sazio, J. Badding, et al., "All-optical modulation using two-photon absorption in silicon core optical fibers," Optics express, vol. 19, pp. 19078-19083, 2011.
[13]R. He, P. J. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, et al., "Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres," Nature Photonics, vol. 6, pp. 174-179, 2012.
[14]C. Joenathan and R. Bunch, "Diameter measurement of single-mode fiber by using interferometric and imaging techniques," Applied optics, vol. 32, pp. 5989-5996, 1993.
[15]E. M. Frins, "Interferometric method for fiber diameter determination," Optical Engineering, vol. 35, pp. 1050-1053, 1996.
[16]S. A. Khodier, "Measurement of wire diameter by optical diffraction," Optics & Laser Technology, vol. 36, pp. 63-67, 2004.
[17]W. Tang, Y. Zhou, and J. Zhang, "Improvement on theoretical model for thin-wire and slot measurement by optical diffraction," Measurement Science and Technology, vol. 10, pp. N119-N123, 1999.
[18]J. Owen, P. Barber, B. Messinger, and R. Chang, "Determination of optical-fiber diameter from resonances in the elastic scattering spectrum," Optics letters, vol. 6, pp. 272-274, 1981.
[19]A. Ashkin, J. Dziedzic, and R. H. Stolen, "Outer diameter measurement of low birefringence optical fibers by a new resonant backscatter technique," Applied optics, vol. 20, pp. 2299-2303, 1981.
[20]L. Watkins, "Scattering from side-illuminated clad glass fibers for determination of fiber parameters," JOSA, vol. 64, pp. 767-772, 1974.
[21]D. H. Smithgall, L. Watkins, and R. Frazee, "High-speed noncontact fiber-diameter measurement using forward light scattering," Applied optics, vol. 16, pp. 2395-2402, 1977.
[22]Y. Nishiyama, S. Kurita, I. Yamamoto, Y. Ishizuka, T. Watanabe, D. Kobayashi, et al., "Diameter and refractive index of a cylindrical thread determined by scattered light pattern," Optical Review, vol. 8, pp. 90-94, 2001.
[23]F. Warken and H. Giessen, "Fast profile measurement of micrometer-sized tapered fibers with better than 50-nm accuracy," Optics letters, vol. 29, pp. 1727-1729, 2004.
[24]L. Cohen and P. Glynn, "Dynamic measurement of optical fiber diameter," Review of Scientific Instruments, vol. 44, pp. 1749-1752, 1973.
[25]M. Dobosz, "Measurement of fiber diameter using an edge diode beam of light," Optics communications, vol. 58, pp. 172-176, 1986.
[26]Beta LaserMike Model 200FI diameter gauge. Available: http://www.betalasermike.com
[27]A. W. Adey, "Scattering of electromagnetic waves by coaxial cylinders," Canadian Journal of Physics, vol. 34, pp. 510-520, 1956.
[28]M. Kerker and E. Matijević, "Scattering of electromagnetic waves from concentric infinite cylinders," JOSA, vol. 51, pp. 506-508, 1961.
[29]F. Tajima, Y. Nishiyama, N. Hiroi, and Y. Hashimoto, "Standard optical coaxial double fiber diameter and refractive index measurement, accuracy, and precision using light scattering at normal incidence," JOSA A, vol. 27, pp. 1-5, 2010.
[30]P. N. Saeta, "Optical measurements of the core radius of high-Δ fibers with 1-nm resolution," Applied optics, vol. 34, pp. 177-182, 1995.
[31]H. C. Hulst and H. Van De Hulst, Light scattering by small particles: Courier Corporation, 1957.
[32]D. Huffman, "Absorption and scattering of light by small particles," Printed in the United States of America, 1983.
[33]M. Kerker, "The Scattering of Light and Other Electromagnetic Radiation" (Academic, New York), 1969.
[34]C.-A. Lin, J. H. Chen, and L. Wang, "High-Q Si microsphere resonators fabricated from Si-cored fibers for WGMs excitation," Photonics Technology Letters, IEEE, vol. 27, pp. 1355-1358, 2015.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top