跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/02 01:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐偉峰
研究生(外文):Wei-Feng Xu
論文名稱:奈米金屬透明電極於有機薄膜太陽能電池之發展與應用
論文名稱(外文):The development and applications of metallic nanomaterials-based transparent electrodes on organic thin film solar cells
指導教授:黃鼎偉魏培坤
指導教授(外文):Ding-Wei HuangPei-Kuen Wei
口試委員:朱治偉李柏璁林泰源楊申語
口試委員(外文):Chih-Wei ChuPo-Tsung LeeTai-Yuan LinSen-Yeu Yang
口試日期:2015-07-30
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:104
中文關鍵詞:透明電極有機太陽能電池金屬薄膜銀奈米線表面電漿共振
外文關鍵詞:Transparent electrodesOrganic photovoltaic cellMetal thin filmsSilver nanowiresSurface plasmon resonance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們提出了兩種類型的奈米金屬透明導電電極-金屬薄膜和奈米線,藉由光散射和電漿增強吸收的協同效應來有效提升含有非氧化銦錫(ITO)透明電極的有機太陽能電池之功率轉換效率。我們也把具有波紋形狀的金屬表面之背反射光電極和基於多層架構的前入射光電極整合在一起。
在基於多層結構的金屬薄膜之實驗中,發展由奈米多孔銀薄膜和氧化鉬所組成的透明電極做為陽極,具有低成本、大面積加工和可室溫製程的優點。在熱蒸鍍過程中,藉由控制膜厚和鍍率來製作出高密度奈米多孔銀膜。當銀膜的厚度為10奈米和每秒5埃米的鍍率,氧化鉬/奈米多孔銀/氧化鉬的多層結構得到約為9 Ω sq-1的片電阻和70%的穿透度。相較於ITO陽極,奈米多孔陽極/SubPc/C60/BCP/Al的元件有增強表面電漿吸收和高填充因子的特性。雖然多層結構金屬薄膜的穿透度低於ITO,但元件可達到3.45%的功率轉換效率,仍可媲美ITO元件的效率。
在金屬奈米線的實驗中,我們發展由奈米銀線和過氧聚鈦酸(PPT)所組成的可溶液法製備的透明電極來提升有機太陽能電池的轉換效率。透過來自PPT的非晶氧化鈦所形成的互連層可大幅提升多層銀線的光電特性。銀線和氧化鈦所形成的複合膜可達到92.14%的平均穿透率和16.01 Ω sq-1的片電阻。結合複合膜和P3HT:PC61BM混合層之有機太陽能電池的效率是使用ITO電極之元件效率的1.45倍。光學模擬證實其效率提升可歸因於增強的近場吸收和大量的入射光散射,其源自於銀線和氧化鈦形成核殼奈米結構之隨機性。
在電漿輔助奈米結構化反射電極的實驗中,我們發展出一種奈米結構化背反射電極來提升搭配有氧化鉬 (10 奈米)/銀 (10 奈米)/氧化鉬 (25 奈米)為透明電極之上入光式元件的效率,該反射電極由聚苯乙烯奈米球模板所製備出的奈米碗型奈米洞二維陣列所構成。該高效率透明電極在波長550奈米的穿透度為88.05% 和片電阻為5.93 Ω sq-1,可達到484極高的優值。結合電漿輔助背電極和P3HT:PC61BM混合層,元件效率可由只用平面式背電極的2.91%提升到3.35%。我們把效率提升歸因於背反射光的大量散射和在奈米洞附近增強的近場吸收。
總結,根據以上的結果,覆蓋介電質的銀奈米線和由介電質及金屬層組成的三明治結構證實可優秀的取代ITO。此外,奈米金屬透明電極對於快速的發展既輕便、可撓且透明的光電元件有很大的開發潛力。


In this dissertation, we propose two kinds of transparent conductive electrodes based on metallic nanomaterials, such as metal thin films and nanowires, to efficiently improve the power conversion efficiency of organic soar cells with indium-tin-oxide-free (ITO) window electrodes by the synergetic effect of light scattering and plasmon-enhanced absorption. We also integrate a light-reflective back electrode featuring a corrugated metal surface with a multilayer-based light-incident front one.
In multilayer-based metallic thin films, a transparent electrode consisting of nanoporous silver thin film and molybdenum oxide was developed for transparent anode with advantages of low cost, large-area processing and room-temperature fabrication. High density nanoporous silver film was fabricated by controlling thickness and deposition rate during thermal evaporation. With silver thickness of 10 nm and 5 Å s-1 deposition rate, the MoOx/nanoporous Ag/MoOx multilayer structure achieved ~ 9 Ω sq-1 sheet resistance and ~70% transparency. Compared to the ITO anode, the nanoporous anode/SubPc/C60/BCP/Al photovoltaic device has an enhanced surface-plasmon absorption and a higher fill factor. Although its transparency is lower than ITO, the nanoporous anode achieved 3.45% power conversion efficiency, comparable to ITO-based devices.
In metal nanowires, solution-processed transparent electrodes made from silver-nanowires and peroxo-polytitanic (PPT) acid gel were developed for enhancing efficiency of organic solar cells. The electronic and optical properties of multilayer silver nanowires were significantly improved through the interconnection layers of amorphous titanium oxide (TiOx) from PPT acid gel. The AgNW-TiOx composite film showed averaged 92.14% optical transmittance with only 16.01 Ω sq-1 sheet resistance. Combining the transparent electrodes with poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC61BM) blend, the efficiency of organic solar cells was 1.45 times of devices using ITO electrode. Optical simulations verified that the improvement was attributed to the enhanced near-field absorption and substantial scattering of incident light resulted from the random nature of the AgNW-TiOx core-shell nanostructure.
In plasmonic-assisted nanostructured reflective electrodes, nanostructured back reflective electrode with nanobowl-shaped 2D nanohole arrays made from polystyrene (PS) nanosphere template was developed for enhancing efficiency of top-illuminated organic solar cells with MoOx (10 nm)/Ag (10 nm)/MoOx (25 nm) stacks as transparent electrode. The high-performance top electrode with a transmittance of 88.05% at 550 nm and a sheet resistance of 5.93 Ω sq-1 reached an extremely high figure of merit (

誌謝------------------------------------------------------i
中文摘要-------------------------------------------------ii
ABSTRACT------------------------------------------------iv
CONTENTS------------------------------------------------vi
LIST OF FIGURES-----------------------------------------ix
LIST OF TABLES------------------------------------------xv
Chapter 1 Introduction---------------------------- -1
1.1 Introduction to organic photovoltaic cells-------1
1.2 Introduction to metallic nanomaterials-based transparent electrodes-----------------------------------2
1.2.1 Patterned metal grids----------------------------3
1.2.2 Metal nanowires----------------------------------5
1.2.3 Metal thin films---------------------------------6
1.3 Motivations--------------------------------------7
1.4 Thesis Organization------------------------------8
Chapter 2 Device fabrication and measurements-----10
2.1 Fundamental principles of organic photovoltaic cells---------------------------------------------------10
2.2 Fabrication procedures of organic photovoltaic cells---------------------------------------------------14
2.3 Measurement system of organic photovoltaic cells----------------------------------------------------------17
2.4 Nanoporous silver film as transparent electrodes----------------------------------------------------------19
2.4.1 Materials and device fabrication----------------19
2.4.2 Optical and electrical characterization---------20
2.5 Peroxo-polytitanic acid coated silver nanowires as transparent electrodes----------------------------------21
2.5.1 Materials and device fabrication----------------21
2.5.2 Optical and electrical characterization---------23
2.6 Plasmonic-assisted nanostructured reflective electrodes----------------------------------------------24
2.6.1 Materials and device fabrication----------------24
2.6.2 Optical and electrical characterization---------26
Chapter 3 Transparent electrode for organic solar cells using multilayer structures with nanoporous silver film----------------------------------------------------28
3.1 Introduction and motivation---------------------29
3.2 Nanoporous silver electrodes--------------------30
3.3 Simulations-------------------------------------34
3.4 Device performance------------------------------40
Chapter 4 Efficiency enhancement of organic solar cells using peroxo-polytitanic acid coated silver nanowires as transparent electrodes---------------------47
4.1 Introduction and motivation---------------------47
4.2 Optical, electrical properties and surface morphology----------------------------------------------48
4.3 Device performance------------------------------54
4.4 Simulations-------------------------------------56
Chapter 5 Efficiency enhancement of top-illuminated ITO-free organic solar cells using plasmonic-assisted nanostructured reflective electrodes--------------------59
5.1 Introduction and motivation---------------------59
5.2 Morphology of nanostructured reflective electrode and optoelectrical characteristics of top transparent electrode-----------------------------------------------61
5.3 Device performance------------------------------64
5.4 Simulations-------------------------------------69
Chapter 6 Conclusion and future work--------------72
LIST OF REFERENCE---------------------------------------74
LIST OF PUBLICATIONS------------------------------------87
LIST OF CONFERENCE PAPERS-------------------------------88
APPENDIX-----------------------------------------------89

1.M. A. Green, "Multiple band and impurity photovoltaic solar cells: General theory and comparison to tandem cells," Progress in Photovoltaics: Research and Applications 9, 137-144 (2001).
2.C. W. Tang, "Two‐layer organic photovoltaic cell," Appl. Phys. Lett. 48, 183-185 (1986).
3.L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, "Device model for the operation of polymer/fullerene bulk heterojunction solar cells," Physical Review B 72, 085205 (2005).
4.S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, "2.5% efficient organic plastic solar cells," Appl. Phys. Lett. 78, 841-843 (2001).
5.C. D. Dimitrakopoulos and D. J. Mascaro, "Organic thin-film transistors: A review of recent advances," IBM J. Res. Dev. 45, 11-27 (2001).
6.P. Peumans, A. Yakimov, and S. R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cells," J. Appl. Phys. 93, 3693-3723 (2003).
7.M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, and R. H. Friend, "Laminated fabrication of polymeric photovoltaic diodes," Nature 395, 257-260 (1998).
8.P. Peumans and S. R. Forrest, "Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells," Appl. Phys. Lett. 79, 126-128 (2001).
9.T. Tsuzuki, Y. Shirota, J. Rostalski, and D. Meissner, "The effect of fullerene doping on photoelectric conversion using titanyl phthalocyanine and a perylene pigment," Sol. Energy Mater. Sol. Cells 61, 1-8 (2000).
10.A. Yakimov and S. R. Forrest, "High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters," Appl. Phys. Lett. 80, 1667-1669 (2002).
11.J. Drechsel, B. Männig, F. Kozlowski, M. Pfeiffer, K. Leo, and H. Hoppe, "Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers," Appl. Phys. Lett. 86, 244102 (2005).
12.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science 306, 666-669 (2004).
13.X. Du, I. Skachko, A. Barker, and E. Y. Andrei, "Approaching ballistic transport in suspended graphene," Nat Nano 3, 491-495 (2008).
14.S. Unarunotai, Y. Murata, C. E. Chialvo, N. Mason, I. Petrov, R. G. Nuzzo, J. S. Moore, and J. A. Rogers, "Conjugated Carbon Monolayer Membranes: Methods for Synthesis and Integration," Adv. Mater. 22, 1072-1077 (2010).
15.S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, "Graphene-based composite materials," Nature 442, 282-286 (2006).
16.C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science 321, 385-388 (2008).
17.R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, "Fine Structure Constant Defines Visual Transparency of Graphene," Science 320, 1308 (2008).
18.H.-Z. Geng, K. K. Kim, K. P. So, Y. S. Lee, Y. Chang, and Y. H. Lee, "Effect of Acid Treatment on Carbon Nanotube-Based Flexible Transparent Conducting Films," J. Am. Chem. Soc. 129, 7758-7759 (2007).
19.M. G. Kang and L. J. Guo, "Nanoimprinted Semitransparent Metal Electrodes and Their Application in Organic Light-Emitting Diodes," Adv. Mater. 19, 1391-1396 (2007).
20.J.-S. Yu, J. Jo, S.-M. Yoon, and D.-J. Kim, "Fabrication of Transparent Conductive Electrode Film Using Thermal Roll-Imprinted Ag Metal Grid and Coated Conductive Polymer," Journal of Nanoscience and Nanotechnology 12, 1179-1182 (2012).
21.Z. Zhang, X. Zhang, Z. Xin, M. Deng, Y. Wen, and Y. Song, "Controlled Inkjetting of a Conductive Pattern of Silver Nanoparticles Based on the Coffee-Ring Effect," Adv. Mater. 25, 6714-6718 (2013).
22.J.-S. Yu, G. H. Jung, J. Jo, J. S. Kim, J. W. Kim, S.-W. Kwak, J.-L. Lee, I. Kim, and D. Kim, "Transparent conductive film with printable embedded patterns for organic solar cells," Sol. Energy Mater. Sol. Cells 109, 142-147 (2013).
23.M. Layani, M. Grouchko, S. Shemesh, and S. Magdassi, "Conductive patterns on plastic substrates by sequential inkjet printing of silver nanoparticles and electrolyte sintering solutions," J. Mater. Chem. 22, 14349-14352 (2012).
24.J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, "Solution-processed metal nanowire mesh transparent electrodes," Nano Lett. 8, 689-692 (2008).
25.A. R. Madaria, A. Kumar, and C. Zhou, "Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens," Nanotechnology 22, 245201 (2011).
26.L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, "Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes," ACS nano 4, 2955-2963 (2010).
27.D. S. Leem, A. Edwards, M. Faist, J. Nelson, D. D. Bradley, and J. C. de Mello, "Efficient organic solar cells with solution-processed silver nanowire electrodes," Adv. Mater. 23, 4371-4375 (2011).
28.A. Madaria, A. Kumar, F. Ishikawa, and C. Zhou, "Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique," Nano Research 3, 564-573 (2010).
29.S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, "Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios," ACS nano 3, 1767-1774 (2009).
30.D. S. Hecht, L. Hu, and G. Irvin, "Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures," Adv. Mater. 23, 1482-1513 (2011).
31.E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, "Self-limited plasmonic welding of silver nanowire junctions," Nat Mater 11, 241-249 (2012).
32.J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, "Semitransparent Organic Photovoltaic Cells with Laminated Top Electrode," Nano Lett. 10, 1276-1279 (2010).
33.C. H. Liu and X. Yu, "Silver nanowire-based transparent, flexible, and conductive thin film," Nanoscale research letters 6, 75 (2011).
34.I. N. Kholmanov, M. D. Stoller, J. Edgeworth, W. H. Lee, H. Li, J. Lee, C. Barnhart, J. R. Potts, R. Piner, D. Akinwande, J. E. Barrick, and R. S. Ruoff, "Nanostructured Hybrid Transparent Conductive Films with Antibacterial Properties," ACS nano 6, 5157-5163 (2012).
35.P.-C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. Ryoung Lee, and Y. Cui, "Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires," Nat Commun 4(2013).
36.Y. Ke, F. Zahid, V. Timoshevskii, K. Xia, D. Gall, and H. Guo, "Resistivity of thin Cu films with surface roughness," Physical Review B 79, 155406 (2009).
37.H.-K. Park, J.-W. Kang, S.-I. Na, D.-Y. Kim, and H.-K. Kim, "Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics," Sol. Energy Mater. Sol. Cells 93, 1994-2002 (2009).
38.S. Lim, D. Han, H. Kim, S. Lee, and S. Yoo, "Cu-based multilayer transparent electrodes: A low-cost alternative to ITO electrodes in organic solar cells," Sol. Energy Mater. Sol. Cells 101, 170-175 (2012).
39.C. Tao, G. Xie, C. Liu, X. Zhang, W. Dong, F. Meng, X. Kong, L. Shen, S. Ruan, and W. Chen, "Semitransparent inverted polymer solar cells with MoO3/Ag/MoO3 as transparent electrode," Appl. Phys. Lett. 95, 053303 (2009).
40.Y.-S. Park, H.-K. Kim, and S.-W. Kim, "Thin Ag Layer Inserted GZO Multilayer Grown by Roll-to-Roll Sputtering for Flexible and Transparent Conducting Electrodes," J. Electrochem. Soc. 157, J301-J306 (2010).
41.P. Chiu, W. Cho, H. Chen, C. Hsiao, and J. Yang, "Study of a sandwich structure of transparent conducting oxide films prepared by electron beam evaporation at room temperature," Nanoscale research letters 7, 304 (2012).
42.J.-D. Yang, S.-H. Cho, T.-W. Hong, D. I. Son, D.-H. Park, K.-H. Yoo, and W.-K. Choi, "Organic photovoltaic cells fabricated on a SnOx/Ag/SnOx multilayer transparent conducting electrode," Thin Solid Films 520, 6215-6220 (2012).
43.Y.-Y. Choi, K.-H. Choi, H. Lee, H. Lee, J.-W. Kang, and H.-K. Kim, "Nano-sized Ag-inserted amorphous ZnSnO3 multilayer electrodes for cost-efficient inverted organic solar cells," Sol. Energy Mater. Sol. Cells 95, 1615-1623 (2011).
44.P.-K. Chiu, C.-T. Lee, D. Chiang, W.-H. Cho, C.-N. Hsiao, Y.-Y. Chen, B.-M. Huang, and J.-R. Yang, "Conductive and transparent multilayer films for low-temperature TiO2/Ag/SiO2 electrodes by E-beam evaporation with IAD," Nanoscale research letters 9, 35 (2014).
45.C.-C. Wu, P. Chen, C.-H. Peng, and C.-C. Wang, "TiOx/Ag/TiOx multilayer for application as a transparent conductive electrode and heat mirror," J Mater Sci: Mater Electron 24, 2461-2468 (2013).
46.H.-K. Kim and J.-W. Lim, "Flexible IZO/Ag/IZO/Ag multilayer electrode grown on a polyethylene terephthalate substrate using roll-to-roll sputtering," Nanoscale research letters 7, 67 (2012).
47.H. Hoppe and N. S. Sariciftci, "Organic solar cells: An overview," J. Mater. Res. 19, 1924-1945 (2011).
48.B. A. Gregg and M. C. Hanna, "Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation," J. Appl. Phys. 93, 3605-3614 (2003).
49.J. Nelson, J. Kirkpatrick, and P. Ravirajan, "Factors limiting the efficiency of molecular photovoltaic devices," Physical Review B 69, 035337 (2004).
50.R. H. Bube and A. L. Fahrenbruch, "Photovoltaic Effect," in Advances in Electronics and Electron Physics, M. Claire, ed. (Academic Press, 1981), pp. 163-217.
51.T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, "Organic tandem solar cells: A review," Energy & Environmental Science 2, 347-363 (2009).
52.G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, "Design Rules for Donors in Bulk-Heterojunction Tandem Solar Cells-Towards 15 % Energy-Conversion Efficiency," Adv. Mater. 20, 579-583 (2008).
53.I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, "WSXM: A software for scanning probe microscopy and a tool for nanotechnology," Rev. Sci. Instrum. 78, 013705 (2007).
54.Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, "A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics," Science 336, 327-332 (2012).
55.T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, "Surface-plasmon enhanced transparent electrodes in organic photovoltaics," Applied Physics Letters 92(2008).
56.H. W. Gao, J. Henzie, and T. W. Odom, "Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays," Nano Letters 6, 2104-2108 (2006).
57.L. Cattin, F. Dahou, Y. Lare, M. Morsli, R. Tricot, S. Houari, A. Mokrani, K. Jondo, A. Khelil, K. Napo, and J. C. Bernede, "MoO3 surface passivation of the transparent anode in organic solar cells using ultrathin films," Journal of Applied Physics 105(2009).
58.S. Lim, D. Han, H. Kim, S. Lee, and S. Yoo, "Cu-based multilayer transparent electrodes: A low-cost alternative to ITO electrodes in organic solar cells," Solar Energy Materials and Solar Cells 101, 170-175 (2012).
59.H. K. Park, J. W. Kang, S. I. Na, D. Y. Kim, and H. K. Kim, "Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics," Solar Energy Materials and Solar Cells 93, 1994-2002 (2009).
60.Y. Y. Choi, S. J. Kang, H. K. Kim, W. M. Choi, and S. I. Na, "Multilayer graphene films as transparent electrodes for organic photovoltaic devices," Solar Energy Materials and Solar Cells 96, 281-285 (2012).
61.H. F. Dam and F. C. Krebs, "Simple roll coater with variable coating and temperature control for printed polymer solar cells," Sol. Energy Mater. Sol. Cells 97, 191-196 (2012).
62.R. Rösch, F. C. Krebs, D. M. Tanenbaum, and H. Hoppe, "Quality control of roll-to-roll processed polymer solar modules by complementary imaging methods," Sol. Energy Mater. Sol. Cells 97, 176-180 (2012).
63.D. R. Cairns, R. P. Witte, D. K. Sparacin, S. M. Sachsman, D. C. Paine, G. P. Crawford, and R. R. Newton, "Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates," Appl. Phys. Lett. 76, 1425-1427 (2000).
64.G. F. Wang, X. M. Tao, and R. X. Wang, "Flexible organic light-emitting diodes with a polymeric nanocomposite anode," Nanotechnology 19(2008).
65.J. A. Jeong, H. K. Kim, and M. S. Yi, "Effect of Ag interlayer on the optical and passivation properties of flexible and transparent Al2O3/Ag/Al2O3 multilayer," Applied Physics Letters 93(2008).
66.X. J. Liu, X. Cai, J. S. Qiao, H. F. Mao, and N. Jiang, "The design of ZnS/Ag/ZnS transparent conductive multilayer films," Thin Solid Films 441, 200-206 (2003).
67.H. M. Stec and R. A. Hatton, "Plasmon-Active Nano-Aperture Window Electrodes for Organic Photovoltaics," Advanced Energy Materials 3, 193-199 (2013).
68.X. R. Tong, B. E. Lassiter, and S. R. Forrest, "Inverted organic photovoltaic cells with high open-circuit voltage," Organic Electronics 11, 705-709 (2010).
69.H. Gommans, B. Verreet, B. P. Rand, R. Muller, J. Poortmans, P. Heremans, and J. Genoe, "On the Role of Bathocuproine in Organic Photovoltaic Cells," Adv. Funct. Mater. 18, 3686-3691 (2008).
70.R. Sennett and G. Scott, "The structure of evaporated metal films and their optical properties," Journal of the Optical Society of America 40, 203-210 (1950).
71.V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, "Transition metal oxides as the buffer layer for polymer photovoltaic cells," Appl. Phys. Lett. 88, 073508 (2006).
72.G. H. Jung, K. Hong, W. J. Dong, S. Kim, and J. L. Lee, "BCP/Ag/MoO3 transparent cathodes for organic photovoltaics," Advanced Energy Materials 1, 1023-1028 (2011).
73.E. D. Palik, Handbook of optical constants of solids (Academic press, 1998), Vol. 3.
74.G. F. Wang, X. M. Tao, and R. X. Wang, "Flexible organic light-emitting diodes with a polymeric nanocomposite anode," Nanotechnology 19, 145201 (2008).
75.E. M. Doherty, S. De, P. E. Lyons, A. Shmeliov, P. N. Nirmalraj, V. Scardaci, J. Joimel, W. J. Blau, J. J. Boland, and J. N. Coleman, "The spatial uniformity and electromechanical stability of transparent, conductive films of single walled nanotubes," Carbon 47, 2466-2473 (2009).
76.D. S. Leem, S. Kim, J. W. Kim, J. I. Sohn, A. Edwards, J. S. Huang, X. H. Wang, J. J. Kim, D. D. C. Bradley, and J. C. deMello, "Rapid Patterning of Single-Wall Carbon Nanotubes by Interlayer Lithography," Small 6, 2530-2534 (2010).
77.S. Kim, J. Yim, X. Wang, D. D. C. Bradley, S. Lee, and J. C. Demello, "Spin- and Spray-Deposited Single-Walled Carbon-Nanotube Electrodes for Organic Solar Cells," Adv. Funct. Mater. 20, 2310-2316 (2010).
78.K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature 457, 706-710 (2009).
79.G. Eda and M. Chhowalla, "Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics," Adv. Mater. 22, 2392-2415 (2010).
80.P. H. Wobkenberg, G. Eda, D. S. Leem, J. C. de Mello, D. D. C. Bradley, M. Chhowalla, and T. D. Anthopoulos, "Reduced Graphene Oxide Electrodes for Large Area Organic Electronics," Adv. Mater. 23, 1558-1562 (2011).
81.P. A. Levermore, R. Jin, X. H. Wang, L. C. Chen, D. D. C. Bradley, and J. C. de Mello, "High efficiency organic light-emitting diodes with PEDOT-based conducting polymer anodes," J. Mater. Chem. 18, 4414-4420 (2008).
82.S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, "Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes," Adv. Mater. 20, 4061-+ (2008).
83.J. Huang, X. Wang, A. J. deMello, J. C. deMello, and D. D. C. Bradley, "Efficient flexible polymer light emitting diodes with conducting polymer anodes," J. Mater. Chem. 17, 3551-3554 (2007).
84.B. Y. Ahn, D. J. Lorang, and J. A. Lewis, "Transparent conductive grids via direct writing of silver nanoparticle inks," Nanoscale 3, 2700-2702 (2011).
85.H. M. Stec, R. J. Williams, T. S. Jones, and R. A. Hatton, "Ultrathin Transparent Au Electrodes for Organic Photovoltaics Fabricated Using a Mixed Mono-Molecular Nucleation Layer," Adv. Funct. Mater. 21, 1709-1716 (2011).
86.W. F. Xu, C. C. Chin, D. W. Hung, and P. K. Wei, "Transparent electrode for organic solar cells using multilayer structures with nanoporous silver film," Sol. Energy Mater. Sol. Cells 118, 81-89 (2013).
87.R. Zhu, C. H. Chung, K. C. Cha, W. Yang, Y. B. Zheng, H. Zhou, T. B. Song, C. C. Chen, P. S. Weiss, G. Li, and Y. Yang, "Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors," ACS nano 5, 9877-9882 (2011).
88.P. Sehati, S. Braun, L. Lindell, X. J. Liu, L. M. Andersson, and M. Fahlman, "Energy-Level Alignment at Metal-Organic and Organic-Organic Interfaces in Bulk-Heterojunction Solar Cells," IEEE J. Sel. Top. Quantum Electron. 16, 1718-1724 (2010).
89.H. Sirringhaus, "Device Physics of Solution-Processed Organic Field-Effect Transistors," Adv. Mater. 17, 2411-2425 (2005).
90.B. P. Rand, J. Genoe, P. Heremans, and J. Poortmans, "Solar cells utilizing small molecular weight organic semiconductors," Progress in Photovoltaics: Research and Applications 15, 659-676 (2007).
91.S. K. Hau, H.-L. Yip, and A. K. Y. Jen, "A Review on the Development of the Inverted Polymer Solar Cell Architecture," Polymer Reviews 50, 474-510 (2010).
92.F. C. Chen, J. L. Wu, C. L. Lee, W. C. Huang, H. M. P. Chen, and W. C. Chen, "Flexible Polymer Photovoltaic Devices Prepared With Inverted Structures on Metal Foils," Ieee Electr Device L 30, 727-729 (2009).
93.M. C. Barr, R. M. Howden, R. R. Lunt, V. Bulović, and K. K. Gleason, "Top-illuminated Organic Photovoltaics on a Variety of Opaque Substrates with Vapor-printed Poly(3,4-ethylenedioxythiophene) Top Electrodes and MoO3Buffer Layer," Advanced Energy Materials 2, 1404-1409 (2012).
94.M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, and J. Luther, "Organic solar cells using inverted layer sequence," Thin Solid Films 491, 298-300 (2005).
95.W. Cao, Y. Zheng, Z. Li, E. Wrzesniewski, W. T. Hammond, and J. Xue, "Flexible organic solar cells using an oxide/metal/oxide trilayer as transparent electrode," Org. Electron. 13, 2221-2228 (2012).
96.K. S. Chen, H. L. Yip, J. F. Salinas, Y. X. Xu, C. C. Chueh, and A. K. Jen, "Strong photocurrent enhancements in highly efficient flexible organic solar cells by adopting a microcavity configuration," Adv. Mater. 26, 3349-3354 (2014).
97.C. J. An, H.-W. Yoo, C. Cho, J.-M. Park, J. K. Choi, M. L. Jin, J.-Y. Lee, and H.-T. Jung, "Surface plasmon assisted high performance top-illuminated polymer solar cells with nanostructured Ag rear electrodes," Journal of Materials Chemistry A 2, 2915 (2014).
98.S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, "Efficient Polymer Solar Cells with Surface Relief Gratings Fabricated by Simple Soft Lithography," Adv. Funct. Mater. 18, 3956-3963 (2008).
99.M. Niggemann, M. Riede, A. Gombert, and K. Leo, "Light trapping in organic solar cells," physica status solidi (a) 205, 2862-2874 (2008).
100.W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
101.H. A. Atwater and A. Polman, "Plasmonics for improved photovoltaic devices," Nat Mater 9, 205-213 (2010).
102.C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, "Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances," Appl. Phys. Lett. 88, 133108 (2006).
103.D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, "Photonic Crystal Geometry for Organic Solar Cells," Nano Lett. 9, 2742-2746 (2009).
104.J. R. Tumbleston, D. H. Ko, E. T. Samulski, and R. Lopez, "Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers," Opt. Express 17, 7670-7681 (2009).
105.L. Hu, D. S. Hecht, and G. Grüner, "Percolation in Transparent and Conducting Carbon Nanotube Networks," Nano Lett. 4, 2513-2517 (2004).
106.S. H. Chang, S. Gray, and G. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Express 13, 3150-3165 (2005).
107.S. A. Darmanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Physical Review B 67, 035424 (2003).
108.L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, "Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 86, 1110-1113 (2001).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文