|
[1]International Technology Roadmap for Photovoltaic (ITRPV.net) Results 2014. [2]D. D. Smith, P. Cousins, S. Westerberg, R. De Jesus-Tabajonda, G. Aniero, and Yu-Chen Shen, "Towards the practical limits of silicon solar cells, " IEEE Journal of Photovoltaics 6.4: 1465-1469 (2014). [3]M. Lu, S. Bowden, U. Das, R. Birkmire. "Interdigitated back contact silicon heterojunction solar cell and the effect of front surface passivation." Appl. Phys. Lett. 91.6: 3507 (2007). [4]K. Masuko, et al. "Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell." Photovoltaics, IEEE Journal of 4.6: 1433-1435 (2014). [5]M. A. Green, Solar cells: Operating principles, Technology and System Applications. 1986, Kensington: UNSW. [6]D. Ceuster, et al., "Low cost, high volume production of 22% efficiency silicon solar cells." in Proceedings of the 22nd European Photovoltaic Solar Energy Conference, (2007). [7]P. J. Cousins, et al., "Generation 3: Improved performance at lower cost." Photovoltaic Specialists Conference (PVSC) 35th IEEE, (2010). [8]J. Renshaw, A. Rohatgi. “Device optimization for screen printed interdigitated back contact solar cells.” Photovoltaic Specialists Conference (PVSC), 37th IEEE (2011). [9]D. S. Kim , V. Meemongkolkiat, A. Ebong, B. Rounsaville, V. Upadhyaya, A. Das and A. Rohatgi, “2D-Modeling and development of interdigitated back contact solar cells on low-cost substrates”, Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on (Volume:2), May (2006). [10]Sentaurus Device User Guide, Version G-2012.06. Synopsys. Inc., 2012. [11]P. P. Altermatt, et al. "The surface recombination velocity at boron-doped emitters: Comparison between various passivation techniques. " in Proceedings of the 21st European Photovoltaic Solar Energy Conference, (2006). [12]http://www.pveducation.org/pvcdrom/solar-cell-operation/shunt-resistance [13]F. Grank, et al. "High efficiency back-contact back junction silicon solar cells. ", Fraunhofer Institude for Solar Energy Systems (ISE), (2009). [14]H. Boo, et al. "Effect of high-temperature annealing on ion-implanted silicon solar cells." International Journal of Photoenergy (2012). [15]M. G. Kang, J. H. Lee, H. Boo, S. J. Tark, H. C. Hwang, W. J. Hwang, H. O. Kang, D. Kim, "Effects of annealing on ion- implanted Si for interdigitated back contact solar cell. " Current Applied Physics 12.6: 1615-1618 (2012). [16]P. Procel, et al. "Analysis of the impact of doping levels on performance of back contact-back junction solar cells." Energy Procedia 55: 128-132 (2014). [17]M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, "24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer. ", Proc. 39th IEEE PVSC, Tampa, (2013). [18]R. Stangl, A. Froitzheim, L. Elstner, W. Fuhs, "Amorphous/crystalline silicon heterojunction solar cells, a simulation study. ", in: 17th European PV Conference, Oct., Munich, (2001). [19]R. Stangl, J. Haschke, M. Bivour, L. Korte, M. Schmidt, K. Lips, B. Rech, "Planar rear emitter back contact silicon heterojunction solar cells.", Solar Energy Materials & Solar Cells 93 (2009). [20]M. Tucci, L. Serenelli, E. Salza, S. De Iuliis, L.J. Geerligs, D. Caputo, M. Ceccarelli, G. de Cesare, "Back contacted a-Si:H/c-Si heterostructure solar cells. ", The Journal of Non-Crystalline Solids 354 (2008). [21]S. Herasimenka, K. Ghosh, S. Bowden and C. Honsberg, "2D modeling of silicon heterojunction interdigitated back contact solar cells. ", in: Proc. 35th IEEE Photovoltaic Specialists Conf., Honolulu, HI, (2009). [22]D. Diouf, J. P. Kleider, T. Desrues, P. J. Ribeyron, "2D simulations of interdigitated back contact heterojunction solar cells based on n-type crystalline silicon.", Physical Status Solidi C Current Topics in Solid State Physics 7 (2010). [23]D. Diouf, J. P. Kleider, T. Desrues, P. J. Ribeyron, "Effects of the front surface field in n-type interdigitated back contact silicon heterojunctions solar cells. ", Energy Procedia 2 (2010). [24]L. Meijun, D. Ujjwal, B. Stuart, H. Steven and B. Robert, "Optimization of interdigitated back contact silicon heterojunction solar cells: tailoring hetero interface band structures while maintaining surface passivation. ", Prog. Photovolt: Res. Appl. (2011) [25]R. Jeyakumar, T. K. Maiti, and Amit Verma. "Influence of emitter bandgap on interdigitated point contact back heterojunction (a-Si:H/c-Si) solar cell performance." Solar Energy Materials and Solar Cells 109 (2013). [26]S. Herasimenka, K. Ghosh, S. Bowden, "2D Modeling of Silicon Heterojunction Interdigitated Back Contact Solar Cells. ", Proc. 35th IEEE Photovoltaic Specialist Conference 2010 (2010). [27]M. Tucci, L. Serenelli, S. De Iuliis, M. Izzi1, G. De Cesare, D. Caputo, "Back contact formation for p-type based a-Si:H/c-Si heterojunction solar cells. ", Physica Status Solidi C Current Topics in Solid State Physics 8 (2011). [28]H. Mimura, Y. Hatanaka, "Energy band discontinuities in a heterojunction of amorphous hydrogenated Si and crystalline Si measured by internal photo-emission. ", Appl. Phys. Lett. 50 (1987). [29]M. Sebastiani, L. Di Gaspare, G. Capellini, C. Bittencourt, F. Evangelisti, "Low energy yield spectroscopy as a novel technique for determining band offsets: application to the c-Si(1 0 0)/a-Si:H heterostructure. ", Physical Review Letters 75 (1995). [30]J. Allen, et al. "Interdigitated back contact silicon hetero-junction solar cells: the effect of doped layer defect levels and rear surface i-layer band gap on fill factor using two-dimensional simulations." Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE, (2011). [31]U. K. Das, S. Bowden, M. Lu, M. A. Burrows, O. Jani, D. Xu, S.S. Hegedus, R. L. Opila, and R.W. Birkmire, "Progress towards high efficiency all back contact heterojunction c-Si solar cells. ", in: Proceedings of the 18th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes, August 3–6, 2008, Vail, CO, (2008). [32]F. Granek, C. Reichel, & S. W. Glunz, "Stability of front surface passivation of back-contact back-junction silicon solar cells under UV illumination. " In Proc. 24th Eur. Photovoltaic Solar Energy Conf. Exhib (pp. 1047-1050). (2009). [33]F. Granek, M. Hermle, C. Reichel, A. Grohe, O. Schultz-Wittmann, & S. Glunz, "Positive effects of front surface field in high-efficiency back-contact back-junction n-type silicon solar cells. " In Photovoltaic Specialists Conference, 2008. PVSC''08. 33rd IEEE (pp. 1-5). IEEE, (2008). [34]M. Hermle, F. Granek, O. Schultz, and S. W. Glunz, “Analyzing the effects of front-surface fields on back-junction silicon solar cells using the charge-collection probability and the reciprocity theorem”, Journal of Applied Physics 103, 054507 (2008) [35]Y. Nishi and R. Doering, Handbook of Semiconductor Manufacturing Technology, Marcel Dekker, New York, NY, USA, 2000. [36]J.D. Plummer, M.D. Deal, and P.B. Griffin, Silicon VLSI Technology (Prentice-Hall, Upper Saddle River, NJ, 2000), Chap. 8. [37]Sinton-Consulting-Inc., http://www.sintonconsulting.com/. [38]R. A. Sinton, A. Cuevas, and M. Stuckings, "Quasi-steady-state photoconductance, a new method for solar cell material and device characterization.", in Proceedings of the 25th IEEE Photovoltaic Specialists Conference, Washington DC, USA, 457-60 ,(1996). [39]B. Fischer, "Loss analysis of crystalline silicon solar cells using photoconductance and quantum efficiency measurements.", Dissertation, University Konstanz, (2003). [40]R. A. Sinton, and R. M. Swanson. "Recombination in highly injected silicon.", Electron Devices, IEEE Transactions on 34.6, (1987). [41]M. A. Green, "Intrinsic concentration, effective densities of states, and effective mass in silicon.", Journal of Applied Physics, (1990) [42]P. Pichler, "Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon.", Springer, (2004). [43]R. Müller, et al. "Defect removal after low temperature annealing of boron implantations by emitter etch‐back for silicon solar cells." physica status solidi (RRL)-Rapid Research Letters 9.1 (2015) [44]A. W. Stephens, and M. A. Green. "Effectiveness of 0.08 molar iodine in ethanol solution as a means of chemical surface passivation for photo-conductance decay measurements." Solar energy materials and solar cells 45.3 (1997) [45]T. Maekawa, and S. Yasushi, "Effect of steady bias light on carrier lifetime in silicon wafers with chemically passivated surfaces." Japanese journal of applied physics 35.2A (1996)
|