跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 10:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳達毅
研究生(外文):Da-Yi Chen
論文名稱:Earthworm平台應用於臺灣地震速報預警研究
論文名稱(外文):Development and Study of Earthworm Platform for Earthquake Early Warning in Taiwan
指導教授:吳逸民吳逸民引用關係
指導教授(外文):Yih-Min Wu
口試委員:溫國樑樂鍇.祿璞崚岸蕭乃祺張建興郭陳澔金台齡
口試日期:2015-07-13
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:118
中文關鍵詞:地震預警地震網P波預警EarthwormPalert
外文關鍵詞:Earthquake Early WarningSeismic NetworkP-wave methodEarthwormPalert
相關次數:
  • 被引用被引用:0
  • 點閱點閱:447
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:0
地震預警系統在中央氣象局運作超過十年,過去僅有少數特定機構接收此系統產生的預警訊息。從2012年起中央氣象局使用Earthworm平台整合來自不同種類的即時觀測資料,並且以此系統進行臺灣地震活動監測。本研究發展的Earthworm Based Earthquake Alarm Reporting (eBEAR) 系統與過去系統相比,能夠縮短資料處理時間並且提升預警資訊的精準度。eBEAR系統中包含三個於Earthworm環境下新開發的模組。這些新的模組可以處理:P波到時挑選、波相組合、地震定位、規模計算及預警訊息發布。本論文主要內容在闡述eBEAR系統的方法與成效。為了調整此系統,選取154個規模4.0到6.5地震進行離線測試。測試結果顯示,平均地震定位誤差為4.2公里,規模誤差為0.3,系統發佈預警訊息時間為地震發生之後14.7秒。另外,實際系統運作情形顯示對於島內及島外地震,平均處理時效分別為地震發生之後15秒及26秒,比起過去的預警系統平均島內地震快3.2秒,島外地震快5.5秒。目前eBEAR系統已經將預警訊息於地震發生之後,即時地傳遞到全國中小學,以爭取在強烈地震波抵達學校前的數秒到數十秒時間發出警報。為持續提升地震監測能力,強化地震預警系統,本研究將543個低價位地震儀與中央氣象局地震觀測網整合,建置更高密度地震觀測網。選取46個規模4.5到6.5地震進行離線測試。測試結果顯示,系統發佈預警訊息時間可從地震發生之後14.7秒,進步到13.1秒。
目前地震預警系統仍存在許多待突破的困難,本文建議如下:對於測站覆蓋的空缺角(GAP)過大時,造成地震定位精確度不良的問題,透過分析現有測站覆蓋度,建議在台灣東部地區增加測站密度;對於規模大於7以上地震可能造成的規模低估情形,建議延長P波時間窗,以利完整記錄斷層錯動時所釋放的能量;對於短時間內發生數個地震導致預警系統可能漏報的情形,建議以即時震度分布圖估算地震大略位置與規模。
由於即時地震資料無論是來自不同的地震觀測儀器,或是來自不同的地震觀測機構,都能夠經由Earthworm軟體整合至同一個作業平台。因此在Earthworm環境下所發展的地震預警系統(eBEAR)能夠有效地在不同的觀測環境下運作。目前eBEAR系統已經在印度、韓國及太平洋海嘯警報中心等機構測試。


For more than 10 years, the Central Weather Bureau of Taiwan has operated an earthquake early warning (EEW) system and has issued warnings for specific agencies. Since 2012 the Earthworm platform in Taiwan has been used to integrate real-time seismic data streams from different types of seismic stations and to monitor seismicity. Using the Earthworm platform, the Earthworm Based Earthquake Alarm Reporting (eBEAR) system is currently in development for shortening reporting times and improving the accuracy of warnings for EEW purposes. The eBEAR system consists of new Earthworm modules for managing P-wave phase picking, trigger associations, hypocenter locations, magnitude estimations, and alert filtering prior to broadcasting. Here, we outline the methodology and performance of the eBEAR system. To calibrate the eBEAR system, an offline test was implemented using 154 earthquakes with magnitudes ranging from ML 4.0 to 6.5. Comparing between the eBEAR and the CWB catalog the results from the offline test show that the epicenter error is about 4.2 km, the standard deviation of magnitude is about 0.3, and the reporting time is about 14.7 s. Additionally, in a comparison of online performance using the current EEW system, the eBEAR system reduced reporting times and improved the accuracy of offshore earthquake locations and magnitudes. Online performance of the eBEAR system indicated that the average reporting times afforded by the system are approximately 15 and 26 s for inland and offshore earthquakes, respectively. The eBEAR system in average can provide more warning time than the current EEW system (3.2 s and 5.5 s for inland and offshore earthquakes, respectively). The eBEAR system now delivers warnings to elementary and junior high schools in Taiwan. For further improving the capabilities of monitoring earthquakes, an EEW system with dense seismic network is constructed by deploying a total of 543 low-cost sensors in Taiwan and incorporating with the official seismic network of Taiwan’s Central Weather Bureau (CWB). The experiment results show that the integrated system can have stable results of source parameters and issue alarms faster (from 14.7 s to 13.1s) than the current system run by only the CWB seismic network (CWBSN).

Contents

Acknowledgements.........1
Chinese Abstract.........2
English Abstract.........4
Contents.........6
List of Figures.........8
List of Tables.........10
1 Introduction.........11
1.1 Motivation and Research Goal.........11
1.2 Concept of EEW.........12
1.3 Worldwide EEW Development.........14
1.4 Taiwan EEW system.........15
1.5 Earthworm for EEW system.........17
1.6 Dissertation Plan.........18
2 Methods and EEW Modules.........19
2.1 Earthquake Location Estimation.........19
2.2 Earthquake Magnitude Estimation.........21
2.2.1τc method.........22
2.2.2 Pd method.........23
2.3 Earthworm System.........24
2.4 EEW Modules.........25
2.4.1 PICK_EEW Module.........26
2.4.2 TCPD Module.........27
2.4.3 DCSN Module.........29
3 eBEAR System in CWB.........32
3.1 CWB Seismic Network.........32
3.2 eBEAR System Configuration.............38
3.3 Offline Test.........40
3.4 Online Performance.........43
3.5 EEW Disseminations.........47
4 Low-cost seismometer for EEW.........51
4.1 Palert Seismic Network.........51
4.2 System Configuration.........52
4.3 Magnitude Estimations Using Palerts.........56
4.4 Offline Test.........59
4.5 Summary.........66
5 A Case Study for MW7.6 Chi-Chi Earthquake.........68
5.1 Signal Intteruption.........69
5.2 System Configuration.........72
5.3 Results.........73
5.4 Summary.........76
6 Discussion and Conclusions.........80
6.1 Station Coverage.........80
6.2 Magnitude Saturation.........82
6.3 Multi-Events.........83
6.4 Application to Earthquake Rapid Reporting System...84
6.5 Conclusions.........85

Reference.........88
Appendix .........98
A. Earthworm Software.........98
A.1 Earthworm Installation.........98
A.2 Earthworm Features.........103
B. CWB24 Format.........109
C. Configure files of EEW modules.........111
D. Online Display of EEW System.........115
E. Publications at National Taiwan University....117


References

Alcik, H., O. Brown, Y.-M. Wu, O. M. Nurcan, and E. Mustafa (2011). An alternative approach for the Istanbul earthquake early warning system. Soil Dynamics and Earthquake Engineering 31, 181–187; doi:10.1016/j.soildyn.2010.03.007.

Allen, R. M., and H. Kanamori (2003). The potential for earthquake early warning in southern California. Science 300, 786–789.

Allen, R. M., H. Brown, M. Hellweg, O. Khainovski, P. Lombard, and D. Neuhauser (2009). Real-time earthquake detection and hazard assessment by ElarmS across California. Geophysical Research Letters 36, L00B08; doi:10.1029/2008GL036766.

Behr, Y., Clinton, J., Kästli, P., Cauzzi, C., Racine, R., & Meier, M. A. (2015). Anatomy of an Earthquake Early Warning (EEW) Alert: Predicting Time Delays for an End‐to‐End EEW System. Seismological Research Letters.

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python toolbox for seismology. Seismological Research Letters, 81(3), 530-533.

Bose, M., E. Hauksson, K. Solanki, H. Kanamori, and T. H. Heaton (2009a). Real-time testing of the on-site warning algorithm in southern California and its performance during the July 29 2008 Mw5.4 Chino Hills earthquake. Geophysical Research Letters 36, L00B03; doi:10.1029/2008GL036366.

Bose, M., V. Sokolov, and F. Wenzel (2009b). Shake map methodology for intermediate-depth Vrancea (Romania) earthquakes. Earthquake Spectra 25, 497–514; doi:10.1193/1.3148882.

Chang, C. H., Y.-M. Wu, D.-Y. Chen, T.-C. Shin, T.-L. Chin, and W.-Y. Chang (2012). An examination of telemetry delay in the Central Weather Bureau Seismic Network, Terr. Atmos. Ocean. Sci. 23, 261-268.

Chen, D.-Y., T. L. Lin, Y.-M. Wu, and N.-C. Hsiao (2012). Testing a P-wave earthquake early warning system by simulating the 1999 Chi-Chi, Taiwan, Mw 7.6 earthquake, Seismol. Res. Lett. 83, 103-108, doi 10.1785/gssrl.83.1.103.

Chen, D. Y., N. C. Hsiao, and Y. M. Wu, 2015: The Earthworm based earthquake alarm reporting system in Taiwan. Bull. Seismol. Soc. Am., 105 ,doi:10.1785/0120140147

Cochran, E. S., J. F. Lawrence, C. Christensen, and R. S Jakka, 2009: The quake-catcher network: Citizen science expanding seismic horizons. Seismol. Res. Lett., 80, 26-30, doi:10.1785/gssrl.80.1.26.

Colombelli, S., Zollo, A., Festa, G., and H. Kanamori, 2012: Early magnitude and potential damage zone estimates for the great Mw 9 Tohoku‐Oki earthquake. Geophys. Res. Lett., 39, 22-28, doi: 10.1029/2012GL053923.

Duputel, Z., L. Rivera, H. Kanamori, and G. Hayes, 2012: W-phase fast source inversion for moderate to large earthquakes (1990 - 2010), Geophysical Journal International, 189, 1125-1147.

Espinosa-Aranda, J. M., A. Jimenez, G. Ibarrola, F. Alcantar, A. Aguilar, M. Inostroza, and S. Maldonado (1995). Mexico City Seismic Alert System. Seismological Research Letters 66, 42–53.

Espinosa-Aranda, J. M., A. Cuellar, A. Garcia, G. Ibarrola, R. Islas, S. Maldonado, and F. H. Rodriguez (2009). Evolution of the Mexican Seismic Alert System (SASMEX). Seismological Research Letters 80, 694–706; doi:10.1785/gssrl.83.1.694.

Fleming, K., M. Picozzi, C. Milkereit, F. Kühnlenz, B. Lichtblau, J. Fischer, C. Zulfikar,O. Özel, and the SAFER and EDIM working groups, 2009: The self-organizing seismic early warning information network (SOSEWIN). Seismol. Res. Lett., 80, 755-771, doi: 10.1785/gssrl.80.5.755.

Geiger, L. (1910). Herbsetimmung bei Erdbeben aus den Ankunfzeiten, K. Gessell. Wiss. Goett. 4, 331-349

Geiger, L. (1912). Probability method for the determination of earthquake epicenters from the arrival time only, Bull. St. Louis Univ. 8, 60-71.

Holland, A, 2003: Earthquake data recorded by the MEMS accelerometer: Field testing in Idaho. Seismol. Res. Lett., 74, 20-26, doi: 10.1785/gssrl.74.1.20.

Horiuchi, S., Y. Horiuchi, S. Yamamoto, H. Nakamura, C. Wu, P. A. Rydelek, and M. Kachi, 2009: Home seismometer for earthquake early warning. Geophys. Res. Lett., 36, L00B04, doi: 10.1029/2008GL036572.

Horiuchi, S., H. Negishi, K. Abe, A. Kamimura, and Y. Fujinawa (2005). An automatic processing system for broadcasting earthquake alarms. Bulletin of the Seismological Society of America 95, 708–718; doi:10.1785/0120030133.

Hoshiba, M., and K. Iwakiri, 2011: Initial 30 seconds of the 2011 off the Pacific coast of Tohoku Earthquake (M (w) 9. 0)-amplitude and tau(c) for magnitude estimation for Earthquake Early Warning. Earth, planets and space. 63, 553-557, doi:10.5047/eps.2011.06.015.

Hsiao, N.-C., Y.-M. Wu, T.-C. Shin, L. Zhao, and T.-L. Teng (2009). Development of earthquake early warning system in Taiwan, Geophys. Res. Lett. 36, L00B02, doi 10.1029/2008gl036596.

Hsiao, N.-C., Y.-M. Wu, L. Zhao, D.-Y. Chen, W.-T. Huang, K.-H. Kuo, T.-C. Shin, and P.-L. Leu (2011). A new prototype system for earthquake early warning in Taiwan, Soil Dyn. Earthquake Eng. 31, 201-208, doi 10.1016/j.soildyn.2010.01.008.

Hsiao, N.-C., T.-W. Lin, S.-K. Hsu, K.-W. Kuo, T.-C. Shin, and P.-L. Leu (2013). Improvement of earthquake locations with the Marine Cable Hosted Observatory (MACHO) offshore NE Taiwan, Mar. Geophys. Res., Online published, DOI:10.1007/s11001-013-9207-3.

Hsieh, C. Y., Y. M. Wu, T. L. Chin, K. H. Kuo, D. Y. Chen, K. S. Wang, Y. T. Chan, W. Y. Chang, W. S. Li, and S. H. Ker, 2014: Low Cost Seismic Network Practical Applications for Producing Quick Shaking Maps in Taiwan. Terr. Atmos. Ocean. Sci. in press, doi: 10.3319/TAO.2014.03.27.01(T).

Huang, H. H., Y. M. Wu, T. L. Lin, W. A. Chao, J. B. H. Shyu, C. H. Chan, and C. H. Chang (2011). The Preliminary Study of the 4 March 2010 Mw6.3 Jiasian, Taiwan, Earthquake Sequence, Terr. Atmos. Ocean. Sci. 22, 283-290, doi: 10.3319/TAO.2010.12.13.01(T).

Huang, Y. L., B. S. Huang, K. L. Wen, Y. C. Lai, and Y. R. Chen (2010). Investigation for strong ground shaking across the Taipei basin during the MW 7.0 eastern Taiwan offshore earthquake of 31 March 2002, Terr. Atmos. Ocean. Sci. 21, 485-493, doi: 10.3319/TAO.2009.12.11.01(TH).

Johnson, C. E., A. Bittenbinder, B. Bogaert, L. Dietz, and W. Kohler (1995). Earthworm: A flexible approach to seismic network processing, IRIS Newsletter 14, 4.
Kanamori, H. (2005). Real-time seismology and earthquake damage mitigation. Annual Review of Earth and Planetary Sciences 33, 195–214

Kanamori, H., and Rivera, L. (2008). Source inversion of W phase: speeding up seismic tsunami warning. Geophysical Journal International, 175(1), 222-238.

Lancieri, M., and A. Zollo (2008). A Bayesian approach to the realtime estimation of magnitude from the early P and S wave displacement peaks. Journal of Geophysical Research 113, B12302; doi:10.1029/2007JB005386.

Lawrence, J. F., E. S. Cochran, A. Chung, A. Kaiser, C.M. Christensen, R. M. Allen, J.W. Baker, B. Fry, T. Heaton, D. Kilb, M. D. Kohler, and M. Taufer, 2014: Rapid Earthquake Characterization Using MEMS Accelerometers and Volunteer Hosts Following the M 7.2 Darfield, New Zealand, Earthquake. Bull. Seism. Soc. Am., 104, 184-192, doi:10.1785/0120120196.

Lee, W. H. K., and D. A. Dodge, (Editors), (1992). “A Course on: PC-Based Seismic Networks", U.S. Geol. Surv. Open-file Report 92 -441, 535 pp.

Ma, K.-F., J. Mori, S.-J. Lee, and S.-B. Yu (2001). Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan earthquake. Bulletin of the Seismological Society of America 91, 1,069–1,087; doi:10.1785/0120000728.

Nakamura, Y. (1988). On the urgent earthquake detection and alarm system (UrEDAS). Proceedings of the Ninth World Conference on Earthquake Engineering 7, 673–678.

Odaka, T., K. Ashiya, S. Tsukada, S. Sato, K. Ohtake, and D. Nozaka (2003). A new method of quickly estimating epicentral distance and magnitude from a single seismic record. Bulletin of the Seismological Society of America 93, 526–532; doi:10.1785/0120020008.

Peng, H., Z. Wu, Y.-M. Wu, S. Yu, D. Zhang, and W. Huang (2011). Developing a prototype earthquake early warning system (EEWS) in the Beijing capital region. Seismol. Res. Lett., 82, 394–403; doi:10.1785/gssrl.83.1.394.

Lin, C. C. J., Z. P. Shen, and S. K. Huang, 2011: Predicting Structural Response with On-Site Earthquake Early Warning System Using Neural Networks. In: Proceedings of the Ninth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society. 2011. p. 14-16.

Lin, P. Y., 2011: Earthquake early warning systems. International Journal of Automation and Smart Technology, 1: 27-34, doi:10.5875/ausmt.v1i2.123.

Lin T. L. and Y. M. Wu, 2010: Magnitude estimation using the covered areas of strong ground motion in earthquake early warning. Geophys. Res. Lett., 37, L09301, doi: 10.1029/2010GL042797.

Lin, T. L., Y. M. Wu, and D. Y. Chen, 2011: Magnitude estimation using initial P-wave amplitude and its spatial distribution in earthquake early waning in Taiwan. Geophys. Res. Lett., 38, L09303, doi: 10.1029/2011GL047461.

Lin, T. L. and Y. M. Wu, 2012: A fast magnitude estimation for the M 9.0 2011 Great Tohoku Earthquake, Seismo. Res. Let., 83, 667-671, doi: 10.1785/0220110119.

R Development Core Team (2006). R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, available from http://www.r project .org/ (last accessed September 2010).

Rydelek, P. and J. Pujol (2004). Real-time seismic warning with a two-station subarray, Bull. Seism. Soc. Am 94, 1546-1550.

Satriano, C., Lomax, A., & Zollo, A. (2008). Real-time evolutionary earthquake location for seismic early warning. Bulletin of the Seismological Society of America, 98(3), 1482-1494.

Satriano, C., Y.-M. Wu, A. Zollo, and H. Kanamori (2011). Earthquake early warning: Concepts, methods and physical grounds. Soil Dynamics and Earthquake Engineering 31, 106–118; doi:10.1016/j. soildyn.2010.07.007.

Shin, T.-C., and T.-l. Teng (2001). An overview of the 1999 Chi-Chi, Taiwan, earthquake,Bull. Seismol. Soc. Am. 91, 895-913, doi 10.1785/0120000738.

Shin, T.-C., C.-H. Chang, H.-C. Pu, H.-W. Lin, and P.-L. Leu (2013). The geophysical database management system in Taiwan, Terr. Atmos. Ocean. Sci. 24, 11-18.

Teng, T. L., Y. M. Wu, T. C. Shin, Y. B. Tsai and W. H. K. Lee, 1997, One minute after:strong-motion map, effective epicenter, and effective magnitude, Bull. Seism. Soc. Am., 87, 1209-1219.

Wu, Y. M., T. C. Shin, C. C. Chen, W. H. K. Lee, and T. L. Teng, 1997: Taiwan rapid earthquake information release system. Seismol. Res. Lett., 68, 931-943.

Wu, Y. M., T. C. Shin, and Y. B. Tsai (1998). Quick and reliable determination of magnitude for seismic early warning, Bull. Seismol. Soc. Am. 88, 1254-1259.

Wu, Y.-M., J.-K. Chung, T.-C. Shin, N.-C. Hsiao, Y.-B. Tsai, W. H. K. Lee, and T.-l. Teng (1999). Development of an integrated earthquake early warning system in Taiwan – case for Hualien area earthquakes, Terr. Atmos. Ocean. Sci. 10, 719-736.
Wu, Y. M., W. H. K. Lee, C. C. Chen, T. C. Shin, T. L. Teng, and Y. B. Tsai (2000). Performance of the Taiwan Rapid Earthquake Information Release System (RTD) during the 1999 Chi-Chi (Taiwan) earthquake, Seismol. Res. Lett. 71, 338-343.

Wu, Y.-M., and T.-L. Teng (2002). A virtual subnetwork approach to earthquake early warning, Bull. Seismol. Soc. Am. 92, 2008-2018.

Wu, Y.-M., and H. Kanamori (2005a). Experiment on an onsite early warning method for the Taiwan early warning system. Bulletin of the Seismological Society of America 95, 347–353; doi:10.1785/0120040097.

Wu, Y.-M., and H. Kanamori (2005b). Rapid assessment of damage potential of earthquakes in Taiwan from the beginning of P waves. Bulletin of the Seismological Society of America 95, 1,181–1,185; doi:10.1785/0120040193.

Wu, Y.-M., and L. Zhao (2006). Magnitude estimation using the first three seconds P-wave amplitude in earthquake early warning, Geophys. Res. Lett. 33, doi 10.1029/2006gl026871.

Wu, Y.-M., H. Kanamori, R. Allen, and E. Hauksson (2007). Determination of earthquake early warning parameters, τc and Pd, for southern California. Geophysical Journal International 170, 711–717; doi:10.1111/j.1365-246X.2007.03430.x.

Wu, Y.-M., and H. Kanamori (2008a). Development of an earthquake early warning system using real time strong motion signals. Sensors 8, 1–9.

Wu, Y.-M., and H. Kanamori (2008b). Exploring the feasibility of onsite earthquake early warning using close-in records of the 2007 Noto Hanto earthquake. Earth, Planets, Space 60, 155–160.

Wu, Y. M., J. B. H. Shyu, C. H. Chang, L. Zhao, M. Nakamura, and S. K. Hsu (2009). Improved seismic tomography offshore northeastern Taiwan: Implications for subduction and collision processes between Taiwan and the southernmost Ryukyu, Geophys. J. Int. 178, 1042–1054

Wu, Y. M., T. L. Lin, W. A. Chao, H. H. Huang, N. C. Hsiao, and C. H. Chang, 2011, Faster short-distance earthquake early warning using continued monitoring of filtered vertical displacement ─ a case study for the 2010 Jiasian earthquake, Taiwan, Bull. Seism. Soc. Am., 101, 701–709, doi:10.1785/0120100153.

Wu, Y. M., C. H. Chang, H. Kuo-Chen, H. H. Hunag, and C. Y. Wang, 2013a: On the use of explosion records for examining earthquake location uncertainty in Taiwan. Terr. Atmos. Ocean. Sci., 24, 685-694, doi: 10.3319/TAO.2013.01.31.01(T).

Wu, Y. M., D. Y. Chen, T. L. Lin, C. Y. Hsieh, T. L. Chin, W. Y. Chang, W. S. Li, and S. H. Ker, 2013b: A high density seismic network for earthquake early warning in Taiwan based on low cost sensors. Seismol. Res. Lett., 84, 1048-1054, doi: 10.1785/0220130085.

Wu, Y. M., 2014: Progress on development of an earthquake early warning system using low cost sensors, Pure and Applied Geophys. Published online, doi: 10.1007/s00024-014-0933-5.

Yu, S. B., H. Y. Chen, L. C. Kuo, S. E. Lallemand, and H. H. Tsien (1997).Velocity field of GPS stations in the Taiwan area, Tectonophysics 274, 41–59.

Zollo, A., G. Iannaccone, M. Lancieri, L. Cantore, V. Convertito, A. Emolo, G. Festa, F. Gallovic, M. Vassallo, C. Martino, C. Satriano, and P. Gasparini (2009). Earthquake early warning system in southern Italy: Methodologies and performance evaluation. Geophysical Research Letters 36, L00B07; doi:10.1029/2008GL036689.

Zollo, A., M. Lancieri, and S. Nielsen (2006). Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records. Geophysical Research Letters 33, L23312; doi:10.1029/2006GL027795.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top