跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/26 05:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:紀蕙青
研究生(外文):Hui-Ching Chi
論文名稱:利用P波多重路徑法研究伊朗高原中部與鄰近區域之地函過渡帶
論文名稱(外文):Using P-wave Triplications to Study the Mantle Transition Zone beneath the Central Iranian Plateau and Surrounding Regions
指導教授:曾泰琳
指導教授(外文):Tai-Lin Tseng
口試委員:洪淑蕙黃柏壽梁文宗陳勁吾
口試日期:2015-07-09
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:122
中文關鍵詞:伊朗高原地震波多重路徑上部地函大陸碰撞
外文關鍵詞:Iranian PlateauTriplicate waveformupper mantlecontinental collision
相關次數:
  • 被引用被引用:0
  • 點閱點閱:72
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
伊朗高原為阿拉伯板塊與歐亞大陸板塊斜向碰撞所形成,過去研究大多著重於地殼至上部地函岩石圈,對於深部之速度構造了解有限,僅有全球尺度的走時層析成像研究在伊朗高原下方的地函深處發現高速異常,並將其解釋為兩大陸在閉合前新特提斯海洋板塊隱沒下去之殘餘物。
本研究使用高解析度P波多重路徑資料分析大陸碰撞帶(主要針對伊朗高原中部)與鄰近相對穩定區域下之地函過渡帶。當地震波經過深度410及660公里不連續面時,會因為速度不連續而形成多重路徑,其相對振幅及相對到時對於地函過渡帶之一維速度構造非常敏感,可以透過波形模擬來良好約束一維模型。本研究結合數個來自高加索及東土耳其寬頻地震網,在研究區域建立了十組長約800至1300公里之P波多重路徑剖面。
研究結果顯示,地函過渡帶的速度梯度在北邊穩定之圖蘭平台及南邊之伊朗高原皆略比全球平均一維速度模型iasp91高,使得660公里不連續面之速度增幅均明顯小於iasp91之5.6%,其值分別為4.5%及4.1%。然而,伊朗在地函過渡帶之速度只比周遭的圖蘭平台快不到0.6%,與走時層析成像發現之高異常比1至3%有出入。我們推測可能隱沒板塊尚未延伸至過渡帶,或是板塊殘片太小且分散而造成本研究低估異常之強度。另外我們也發現圖蘭平台和其他歐亞大陸及印度穩定地塊下之660公里不連續面速度增幅均介於4%左右,可能為歐亞區域的地函代表特徵。


Iranian plateau is formed by the continental collision between Arabia and Eurasia. Recent studies of regional seismic tomography show P- and S-wave anomalies in the uppermost mantle beneath Iranian Plateau, but the structure of mantle transition zone (TZ) remains inconclusive. The high-velocity anomalies in the tomographic images are typically interpreted as the remnants of Neo-Tethys slab in the uppermantle that was subducted beneath Iran prior to the collision.
In this study, we utilize triplicate waveforms of P-waves to investigate the structure of TZ beneath deformed Iranian Plateau and the surroundings that are tectonically stable. The rays passing through the 410- and 660-km seismic discontinuities form multiple arrivals, whose relative amplitude and timing are most sensitive to the velocity contrast across the TZ boundaries. By combining several broadband arrays in eastern Anatolia and the Caucasus, we construct 10 seismic profiles, each about 800 to 1300 km long, to constrain the vecloties under the study area based on modeling of waveforms.
Our results show that the velocity gradient in the TZ under the Turan platform and Iranian plateau are both higher than that of the global average model iasp91. This also makes the contrasts of the two models at the 660 km discontinuity relatively small (about 4.5% for Turan and 4.1% for Iran) comparing to the 5.6% in iasp91. Although the P-wave speed in the base of TZ under Iranian plateau is faster than Turan, the amount of anomaly is inappreciably small (only ~0.6%). This is inconsistent with the tomography result in the previous study which indicates 1-3% of variations in the TZ. Our results infer that the subducted/break-off slab had not reached to the deeper TZ. Alternative interpretation is that, the seismic anomaly is underestimated in our study if the fragments of the slab are small in size and separated apart in the sampled area. Finally, the contrasts at the 660 km discontinuity under Turan is comparable to other tectonically stable areas in Euraisa and India. Perhaps 4% contrast is a representative background value for continental Asia.


口試委員會審定書 i
誌謝 ii
中文摘要 iv
英文摘要 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 研究區域地質背景簡介 1
1.2 研究區域之地震速度構造 8
1.3 研究動機與目的 12
1.4 本文論文內容 12
第二章 研究原理與方法 13
2.1 地函過渡帶 13
2.2 地震波多重路徑原理 20
2.3 理論地震波之計算 23
2.4 約束地函過渡帶之速度構造 24
第三章 資料與分析 25
3.1 地震波多重路徑分析 25
3.1.1 P波多重路徑之資料選取與處理 25
3.1.2 利用解迴旋去除震源時間函數 30
3.2 使用F-K法計算理論地震波 35
3.2.1 速度模型 35
3.2.2 F-K法之各項參數設定 37
3.3 地震深度對地震波多重路徑的影響 41
3.4 速度模型之測試 44
第四章 研究結果與討論 47
4.1 北部地函過渡帶之速度構造結果 49
4.2 南部地函過渡帶之速度構造結果 56
4.3 絕對到時與速度修正 66
4.4 速度模型之比較與討論 76
4.4.1 前人研究對比 76
4.4.2 全球穩定大陸下之地函過渡帶速度構造比對 80
第五章 結論 83
參考文獻 85
附錄 97
附錄A P波多重路徑使用測站之列表 97
附錄B 選用之初始速度模型 100
附錄C 各地震之相關參數整理 102
附錄D 其他地震剖面模擬情形 106
附錄E 南邊410不連續面增幅為4.5%模型之擬合 117
附錄F 固定不連續面深度時速度模型之比較 119


Adamia, S.A., Chkhotua, T., Kekelia, M., Lordkipanidze, M., et al. (1981), Tectonics of the Caucasus and adjoining regions: implications for the evolution of theTethys ocean. J. of Struct.Geol. 3, 437–447.
Agard, P., J. Omrani, L. Jolivet, and F. Mouthereau (2005), Convergence history across Zagros (Iran): constraints from collisional and earlier deformation, Int. J. Earth Sci., 94(3), 401-419.
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B.,Spakman, W.,Monie, P., Meyer, B. & Wortel, R. (2011), Zagros orogeny:asubduction-dominated process, Geol. Mag.,148,692-725.
Agard, P., P. Monie, W. Gerber, J. Omrani, M. Molinaro, B, Meyer, L. Labrousse, B. Vrielynck, L. Jolivet, and P.Yamato (2006), Transient, synobduction exhumation of Zagros blueschists inferred from P-T, deformation, time, and kinematic constraints: Implications for Neotethyan wedge dynamics, J. Geophys. Res., 111(B11), doi:10.1029/2005JB004103.
Alavi, M. (1994), Tectonics of the Zagros orogenic belt of Iran: new data and interpretations, Tectonophysics, 229, 221-238.
Alinaghi, A., Koulakov, I. and Thybo, H. (2007), Seismic tomographic imaging of P- and S-waves velocity perturbations in the upper mantle beneath Iran, Geophys. J. Int., 169: 1089–1102. doi: 10.1111/j.1365-246X.2007.03317.x.
Al-Lazki, A.I., Sandvol, E., Seber, D., Barazangi, M., Turkelli, N., Mohamad, R. (2004), Pn tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian, Eurasian and African plates, Geophys. J. Int., 158, 1024–1040, doi:10.1111/j.1365–246X.2004.02355.x.
Anderson, D.L. (1967), Phase changes in the upper mantle, Science, 157, 1165-1173.
Ballato, P., Uba, C.E., Landgraf, A., Strecker, M.R., Sudo, M., Stockli, D.F., Friedirch, A. & Tabatabaei, S.H. (2011), Arabia-Eurasia continental collision: insights from late tertiary foreland-basin evolution in the Alborz Mountains, Northern Iran, Bull. geol. Soc. Am., 123(1-2), 106-131.
Benz, H. M., and J. E. Vidale (1993), Sharpness of upper-mantle discontinuities determined from high-frequency reflections, Nature, 365, 147–150.
Berberian M, Yeats RS (1999), Patterns of historical earthquakerupture in the Iranian plateau, Bull. Seismol. Soc. Am.,89, 120–139.
Berberian, F., Muir, I.D., Pankhurst, R.J. & Berberian, M. (1982), Late cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran, J. geol. Soc. London, 139, 605-614.
Berberian, M. and King, G.C.P (1981), Toward a paleogeography and tectonic evolution of Iran, Can. J. Earth Sci.,18, 1764-6.
Bijwaard, H., W. Spakman, and E. R. Engdahl (1998), Closing the gap between regional and global travel time tomography, J. Geophys. Res., 103, 30,055– 30,078.
Bird, P (1978), Finite-element modeling of the lithosphere deformation:the Zagros collision orogeny, Tectonophysics, 50,307-336.
Brudzinski, M. R., W.-P. Chen, R. L. Nowack, and B.-S. Huang (1997), Variations of P wave speeds in the mantle transition zone beneath the northern Philippine Sea, J. Geophys. Res., 102(B6), 11815–11827, doi:10.1029/97JB00212.
Brudzinski, M.R., Chen, W.-P. (2003), A petrologic anomaly accompanying outboard earthquakes beneath Fiji-Tonga: Corresponding evidence from broadband P and S waveforms, J. Geophys. Res., 108, doi:10.1029/2002JB002012.
Chapman, C.H., Chu, J.-Y., and Lyness, D. G. (1988), The WKBJ seismogram algorithm, in Seismological Algorithm: Computational Methods and Computer Programs, Doornbos, D. ed., Academic Press Limited, London, UK.
Chen, W.-P., and T.-L. Tseng (2007), Small 660-km seismic discontinuity beneathTibet implies resting ground for detached lithosphere, J. Geophys. Res., 112,B05309, doi:10.1029/2206JB004607.
Cin-Ty A. Lee, Peter Luffi, and Emily J. Chin (2011),Building and Destroying Continental Mantle, Annu. Rev. Earth Planet. Sci., Vol. 39: 59 -90. DOI: 10.1146/annurev-earth-040610-133505.
Crotwell, H.P, Owen,T.J , and Ritsema, J (1999), The TauP Toolkit: Flexible SeismicTravelTime and Raypath Utilities, Seismological Research Letters. 70, 154-60.
Davies, G. F. (1999), Dynamic earth, Cambridge University Press, pp. 458, Cambridge, UK.
Deuss, A., and J. Woodhouse (2001), Seismic observations of splitting of the midtransition zone discontinuity in Earth’s mantle, Science, 294, 354 – 357.
Dziewonski, A. M., and D. L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297 – 356, 1981.
Engdahl, E. R., J. Jackson, S. C. Myers, E. Bergman, and K. Priestly (2006), Relocation and assessment of seismicity in the Iran region, Geophys. J. Int., 167, 761–778.
Engdahl, E. R., R. D. van der Hilst, and R. P. Buland (1998), Globalteleseismic earthquake relocation with improved travel times and proceduresfor depth determination, Bull. Seismol. Soc. Am., 88(3), 722–743.
Faccenda, M (2014), Water in the slab: a trilogy, Tectonophysics, 614, 1–30.
Fei, Y., J. Van Orman, J. Li, W. van Westrenen, C. Sanloup, W. Minarik, K. Hirose, T. Komabayashi, M. Walter, and K. Funakoshi (2004), Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications, J. Geophys. Res., 109, B02305, doi:10.1029/2003JB002562.
Flanagan, M. P., and P. M. Shearer (1998), Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors, J. Geophys. Res., 103(B2), 2673–2692, doi:10.1029/97JB03212.
Fukao, Y., Obayashi, M., Nakakuki, T (2009), Stagnant slab: a review, Annu. Rev. Earth Planet. Sci., 37, 19–46. doi:10.1146/annurev.earth.36.031207.124224.
Gavillot, Y., G. J. Axen, D. F. Stockli, B. K. Horton, and M. D. Fakhari (2010), Timing of thrust activity in the High Zagros fold-thrust belt, Iran, from (U-Th)/He thermochronometry, Tectonics, 29, TC4025, doi:10.1029/2009TC002484.
Given, J. W., and D. V. Helmberger (1980), Upper mantle structure of northwestern Eurasia, J. Geophys. Res., 85(B12),7183–7194, doi:10.1029/JB085iB12p07183.
Grand, S. P., and D. V. Helmberger (1984), Upper mantle shear structure beneath the northwest Atlantic Ocean, J. Geophys. Res., 89(B13), 11465–11475,doi:10.1029/JB089iB13p11465.
Gu, Y. J., and A. M. Dziewonski (2002), Global variability of transition zone thickness, J. Geophys. Res., 107(B7), doi:10.1029/2001JB000489.
Hafkenscheid, E., M. J. R. Wortel, and W. Spakman (2006), Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions, J. Geophys. Res., 111, B08401, doi:10.1029/2005JB003791.
Hatzfeld, D., and P. Molnar (2010), Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications, Rev. Geophys., 48, RG2005, doi:10.1029/2009RG000304.
Huesing, S. K., Zachariasse, W. J. et al. (2009), OligoMiocene foreland basin evolution in SE Anatolia: implications for the closure of the eastern Tethys gateway. In: Van Hinsbergen, D. J. J., Edwards, M. A. & Govers, R. (eds) Geodynamics of Collision and Collapse at the Africa–Arabia–Eurasia Subduction Zone, Geological Society, London, Special Publications, 311, 107–132.
Irifune, T., N. Nishiyama, K. Kuroda, T. Inoue, M. Isshiki, W. Utsuimi, K. Funakoshi, S. Urakawa, T. Uchida, T. Katsura, and O. Ohtaka (1998), The post spinel phase boundary in Mg2SiO4 determined by in situ X-ray diffraction, Science, 279, 1698 – 1700.
Ito, E., and E. Takahashi (1989), Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications, J. Geophys. Res., 94(B8), 10637–10646, doi:10.1029/JB094iB08p10637.
Jackson, I., S. Webb, L. Weston, and D. Boness (2005), Frequency dependence of elastic wave speeds at high temperature; a direct experimental demonstration, Phys. Earth Planet. Inter., 148 (1), 85-96.
Jackson, J., Priestly, K., Allen, M. & Berberian, M. (2002), Active tectonics of the South Caspian Basin, Geophys. J. Int., 148(2), 214–245.
Jackson, J.M., S.V. Sinogeikin, and J.D. Bass (2000), Sound velocities and elastic properties of -Mg2SiO4 to 873 K by Brillouin spectroscopy, Am. Mineral., 85 (2), 296-303.
Jeanloz, R., and A. B. Thompson (1983), Phase transitions and mantle discontinuities, Rev. Geophys., 21(1), 51–74, doi:10.1029/RG021i001p00051.
Jiménez-Munt, I., Fernàndez, M., Saura, E., Vergés, J. and Garcia-Castellanos, D. (2012), 3-D lithospheric structure and regional/residual Bouguer anomalies in the Arabia–Eurasia collision (Iran),Geophys. J. Int., 190: 1311–1324, doi: 10.1111/j.1365-246X.2012.05580.x.
Kadinsky-Cade, K., Barazangi, M., Oliver, J. & Isacks, B. (1981), Lateral variations in high-frequency seismic wave propagation regional distances across the Turkish and Iranian plateaus, J. geophys. Res., 86, 9377-9396.
Katsura, T., and E. Ito (1989), The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel, J. Geophys. Res., 94(B11),15663–15670, doi:10.1029/JB094iB11p15663.
Katsura, T., et al. (2003), Post-spinel transition in Mg2SiO4 determined by high P-T in-situ X-ray diffractometry, Phys. Earth Planet. Inter., 136, 11 – 24.
Katsura, T., et al. (2004), Olivine-wadsleyite transition in the system (Mg,Fe)2SiO4, J. Geophys. Res., 109, B02209, doi:10.1029/2003JB002438.
Kaviani, A., Paul, A., Bourova, E., Hatzfeld, D., Pedersen, H, and Mokhtari, M (2007), A strong seismic velocity contrast in the shallow mantle across the Zagros collision zone (Iran), Geophys. J., Volume 171, Issue 1, pp. 399-410., doi:10.1111/j.1365-246X.2007.03535.x.
Kawai, K., Yamamoto, S., Tsuchiya, T., Maruyama, S (2013), The second continent: existence of granitic continental materials around the bottom of the mantle transition zone, Geosci. Front. 4, 1–6.
Kazmin, V. G., I. M. Sbortshikov, L.‐E. Ricou, L. P. Zonenshain, J. Boulin,and A. L. Knipper (1986), Volcanic belts as markers of the Mesozoic‐Cenozoic active margin ofEurasia, Tectonophysics, 123, 123–152,doi:10.1016/0040-1951(86)90195-2.
Kennett, B.L.N. (1991), IASPEI 1991 Seismological Tables, Research School of Sci., Australian National University, Canberra.
Kennett, B.L.N., Gudmundsson, O., Tong, C. (1994), The upper-mantle S and P velocity structure beneath northern Australia from broad-band observations, Phys. Earth Planet. Inter. 86, 85-98.
Kern, H. (1982), P- and S-Wave velocities in crustal and mantle rocks under the simultaneous action of high confining pressure and high temperature and the effect of the rock microstructure, in High-Pressure Researches in Geoscience, edited by W. Schreyer, pp. 15-45, E. Schweizerbart, Stuttgart, Germany.
Koulakov, I. (2011), High-frequency P and S velocity anomalies in the upper mantle beneath Asia from inversion of worldwide traveltime data, J. Geophys. Res., 116, B04301, doi:10.1029/2010JB007938.
Laske, G., Masters., G., Ma, Z. and Pasyanos, M. (2013), Update on CRUST1.0 - A 1-degree Global Model of Earth''s Crust, Geophys. Res. Abstracts, 15, Abstract EGU2013-2658.
Lawrence, J. F., and P. M. Shearer (2006), A global study of transition zone thickness using receiver functions, J. Geophys. Res., 111, B06307, doi:10.1029/2005JB003973.
Li, B., R.C. Liebermann, and D.J. Weidner (1998), Elastic moduli of wadsleyite (b-Mg2SiO4) to 7 gigapascals and 873 Kelvin, Science, 281 (5377), 675-677.
Li, B., R.C. Liebermann, and D.J. Weidner (2001), P-V-VP -VS -T measurements on wadsleyite to 7 GPa and 873 K; implications for the 410-km seismic discontinuity, J. Geophys. Res., 106 (B12), 30,579-530,591.
Li, X., Yuan, X. (2003), Receiver functions in northeast China-implications for slab penetration into the lower mantle in Northwest Pacific subduction zone, Earth Planet. Sci. Lett. 216, 679 – 691.
Maggi, A. and Priestley, K. (2005), Surface waveform tomography of the Turkish–Iranian plateau, Geophys. J. Int., 160: 1068–1080. doi: 10.1111/j.1365-246X.2005.02505.x
Manaman, N. S., Shomali, H. and Koyi, H. (2011), New constraints on upper-mantle S-velocity structure and crustal thickness of the Iranian plateau using partitioned waveform inversion, Geophys. J. Int., 184: 247–267. doi: 10.1111/j.1365-246X.2010.04822.x.
McNamara, D. E., W. R. Walter, T. J. Owens, and C. J. Ammon (1997), Upper mantle velocity structure beneath the Tibetan Plateau from Pn travel time tomography, J. Geophys. Res., 102(B1), 493–505, doi:10.1029/96JB02112.
Mellors, R. J. and Jackson, J. and Myers, S. and Gok, R. and Priestley, K. and Yetirmishli, G(2012), Deep Earthquakes beneath the Northern Caucasus: Evidence of Active or Recent Subduction in Western Asia, Bull. Seismol. Soc. Am., 102 (2). pp. 862-866. DOI 10.1785/0120110184.
Meng, Y., et al. (1993), In situ high P-T X ray diffraction studies on three polymorphs ( ,  ,  ) of Mg2SiO4, J. Geophys. Res., 98 (B12), 22,199-122,207.
Molinaro, M., Zeyen, H. and Laurencin, X. (2005), Lithospheric structure beneath the south-eastern Zagros Mountains, Iran: recent slab break-off?, Terra Nova, 17: 1–6. doi: 10.1111/j.1365-3121.2004.00575.x.
Morishima H., Kato T., Suito M., Ohtani E., Urakawa S., Utsumi W., Shimomura O. and Kikegawa T. (1994), The phase-boundary between alpha-Mg2SiO4 and beta-Mg2SiO4 determined by insitu X-ray observation, Science 265, 1202–1203.
Motavalli-Anbaran, S.-H., H. Zeyen, M.-F. Brunet, and V. E. Ardestani (2011), Crustal and lithospheric structure of the Alborz Mountains, Iran, and surrounding areas from integrated geophysical modeling, Tectonics, 30, TC5012, doi:10.1029/2011TC002934.
Paul, A., Hatzfeld, D., Kaviani, A., Tatar, M. & Pequegnat, C. (2010), Seismic imaging of the lithospheric structure of the Zagros mountain belt (Iran), In Tectonic and Stratigraphic Evolution of Zagros and Makran during the Mesozoic-Cenozoic (eds P. Leturmy & C. Robin), pp. 5-18. Geological Society of London, Special Publication no. 330.
Paul, A., Kaviani, A., Hatzfeld, D., Vergne, J. R. M. & Mokhtari, M. (2006), Seismological evidence for crustal-scale thrusting in the Zagros mountain belt (Iran), Geophys. J. Int., 166, 227-37.
Pei, S., J. Zhao, Y. Sun, Z. Xu, S. Wang, H. Liu, C. A. Rowe, M. N. Toksöz, and X. Gao (2007), Upper mantle seismic velocities and anisotropy in China determined through Pn and Sn tomography, J. Geophys. Res., 112, B05312, doi:10.1029/2006JB004409.
Piromallo, C., and A. Morelli (2003), P wave tomography of the mantle under theAlpine-Mediterranean area, J. Geophys. Res., 108(B2), 2065, doi:10.1029/ 2002JB001757
Priestley, K., D. McKenzie, J. Barron, M. Tatar, and E. Debayle (2012), The Zagros core: Deformation of the continental lithospheric mantle, Geochem. Geophys. Geosyst., 13, Q11014, doi:10.1029/2012GC004435.
Reilinger, R., et al. (2006), GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamicsofplate interactions, J. Geophys. Res., 111, B05411, doi:10.1029/2005JB004051.
Ringwood, A.E. (1962), A model for the upper mantle, J. Geophys. Res., 67(2), 857–867, doi:10.1029/JZ067i002p00857.
Rodgers, A., Ni, J. & Hearn, T (1997), Propagation characteristics of short-period Sn and Lg in the Middle East, Bull. Seismol. Soc. Am., 87, 396-413.
Ryberg, T., F. Wenzel, A. V. Egorkin, and L. Solodilov (1998), Properties of the mantle transition zone in northern Eurasia, J. Geophys. Res., 103(B1), 811–822, doi:10.1029/97JB02837.
Sandvol, E., Al-Damegh, K., Calvert, A., Seber, D., Barazangi, M., Mohamad, R., Gok, R., Turkelli, N. & Gurbuz, C (2001), Tomographic imaging of Lg and Sn propagation in the Middle East, Pure appl. Geophys., 158, 1121-1163.
Simon, R. E., Wright, C., Kgaswane, E. M. and Kwadiba, M. T. O. (2002), The P wavespeed structure below and around the Kaapvaal craton to depths of 800 km, from traveltimes and waveforms of local and regional earthquakes and mining-induced tremors, Geophys. J. Int., 151: 132–145. doi: 10.1046/j.1365-246X.2002.01751.x.
Sinogeikin, S.V., and J.D. Bass (2002), Elasticity of pyrope and majorite-pyrope solid solutions to high temperatures, Earth Planet. Sci. Lett., 203 (1), 549-555.
Sinogeikin, S.V., J.D. Bass, and T. Katsura (2001), Single-crystal elasticity of g-(Mg0.91Fe0.09)2SiO4 to high pressures and to high temperatures, Geophys. Res. Lett., 28 (22), 4335-4338.
Sinogeikin, S.V., J.D. Bass, and T. Katsura (2003), Single-crystal elasticity of ringwoodite to high pressures and high temperatures; implications for 520 km seismic discontinuity, Phys. Earth Planet. Inter., 136 (1-2), 41-66.
Stein, S.,Wysession, M. (2003), An Introduction to Seismology, Earthquakes and Earth structure, Blackwell, 498 pp, Oxford, UK.
Suzuki, A., E. Ohtani, H. Morishima, T. Kubo, Y. Kanbe, T. Kondo, T. Okada, H. Terasaki, T. Kato, and T. Kikegawa (2000), In situ determination of the phase boundary between wadsleyite and ringwoodite in Mg2SiO4, Geophys. Res. Lett., 27, 803 – 806.
Tseng, T.-L(2007), Seismic studies of the mantle transition zone, Ph. D. thesis, University of Illinois at Urnbana-Champaign, Champaign, Illinois.
Tseng, T.-L. and W.-P. Chen (2008), Discordant contrasts of P- and S-wave speeds across the 660-km discontinuity beneath Tibet: A case for hydrous remnant ofsub-continental lithosphere, Earth Planet. Sci. Lett., 268(3–4),450-462.
Tseng, T.-L., and W.-P. Chen (2004), Contrasts in seismic wave speeds and density across the 660-km discontinuity beneath the Philippine and the Japan Seas, J. Geophys. Res., 109, B04302, doi:10.1029/2003JB002613.
Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M.R., Vigny, C., Masson, F., Nankali, H.R., Martinod, J., Ashtiany, A., Bayer, R., Tavakoli, F., Chéry, J. (2004), Present-day deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophys. J. Int. 157, 381–398.
Villasenor, A., Ritzwoller, M.H., Levshin, A.L., Barmin, M.P., Engdahl, ˜ E.R., Spakman, W. & Trampert, J. (2001), Shear velocity structure of Central Eurasia from inversion of surface wave velocities, Phys. Earth planet. Inter., 123, 169–184.
Wang, T., and L. Chen (2009), Distinct velocity variations around the base of the upper mantle beneath northeast Asia, Phys. Earth Planet. Inter., 172, 241–256, doi:10.1016/j.pepi.2008.09.021.
Wang, Y., Wen, L., Weidner, D., He, Y. (2006b), SH velocity and compositional models near the 660-km discontinuity beneath South America and Northeast Asia. J. Geophys. Res. 111. doi:10.1029/2005JB003849.
Wang, Y., Wen, Y., Weidner, D. (2008), Upper mantle SH- and P-velocity structures andcompositional models beneath southern Africa, Earth Planet. Sci. Lett., 267,596–608.
Woodhouse, J.H. (1988), The calculation of eigenfrequencies and eigenfunctions of the free oscillations of the Earth and the Sun. in Seismological Algorithms, ed. Doornbos, D.J., 321-370.
Zhao, M., C. A. Langston, A. A. Nyblade, and T. J. Owens (1999), Upper mantle velocity structure beneath southern Africa from modeling regional seismic data, J. Geophys. Res., 104(B3), 4783–4794, doi:10.1029/1998JB900058.
Zhu, L. and Rivera, L. A (2002), A note on the dynamic and static displacements from a point source in multilayered media, Geophys. J. Int., 148, 619-627.
Zou, Z., K. D. Koper, and V. F. Cormier (2008), The structure of the base of the outer core inferred from seismic waves diffracted around the inner core, J. Geophys. Res., 113, B05314, doi:10.1029/2007JB005316.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文