跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 13:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周志勳
研究生(外文):Chih-Shiun Chou
論文名稱:銅基材料於固態燃料電池之應用與熱熔擠組件開發
論文名稱(外文):Application of Cu-Based Material on Solid Oxide Fuel Cell (SOFC) and Development of Melt-Extrusion (ME) Module
指導教授:韋文誠韋文誠引用關係
指導教授(外文):Wen-Chen Wei
口試委員:黃坤祥王安邦洪逸明
口試委員(外文):Kuen-Shyang HwangAn-Bang WangI-Ming Hung
口試日期:2015-04-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:134
中文關鍵詞:黃銅氧化動力學陽極中溫型固態燃料電池熱熔擠裝置
外文關鍵詞:Cubrassoxidation kineticsanodeIT-SOFCmelt-extrusion (ME)
相關次數:
  • 被引用被引用:2
  • 點閱點閱:84
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用銅基材料製作固態燃料電池之陽極,進行以下的研究開發工作。測試銅與銅鋅合金之基本性質,如導電性、熱膨脹係數、硬度等特性,並對此金屬之抗氧化性做深入探討,測試並比較銅與鎳金屬、鈦六鋁四釩合金在不同測試條件下之氧化行為,最後用表面氧化層之微結構與熱重分析的氧化結果相互驗證。本研究亦製備摻釤及鈷之氧化鈰(Co-SDC)電解質,並提出合成與燒結SDC粉末的方法,利用銅的高導電性和防止積碳的特性,與SDC良好的催化性和離子導電性,使此電池能在750 oC達到112 mW cm-2的最高電功率輸出。此外有鑒於銅鋅合金相較於純銅有較低的熔點和成形性,非常適合做為3D列印的金屬胚料,因此本研究亦設計與開發一熱熔擠(ME)裝置來擠製銅鋅合金,此裝置能達到1100 oC,且有優異的隔熱特性,當擠出嘴為1000 oC時,此裝置外部僅為51 oC。

This study used Cu-based materials as an anode of solid oxide fuel cells (SOFCs) and conducted the following R&D works. Properties of Cu and Cu-Zn alloy were investigated, including electrical conductivity, coefficient of thermal expansion (CTE), hardness and oxidation behavior. The oxidation-resistance of Cu, Ni and Ti-6Al-4V was investigated and compared. Moreover, the microstructure of the oxide layers was observed to verify the results of TGA test. This study also developed cobalt-doped SDC cermet as an electrolyte for intermediate temperature (IT)-SOFC. The Cu-based electrode provided good electronic conductivity and prevented carbon deposition. The SDC was used as catalyst and ionic conductor. The methods to synthesize SDC and sinter a dense SDC electrolyte were also provided in this study. Maximum power density of the Cu-based SOFC was 112 mW cm-2 at 750 oC. On the other hand, due to a low melting point and good formability of Cu-Zn alloy, it was suitably applied on 3D printing (3DP) technique. As a result, a melt-extrusion (ME) module was designed to print Cu-Zn alloy. The ME module could reach 1100 oC to extrude Cu-Zn alloy. Besides, the heat insulation of the module was excellent, which was 51 oC outside the module while the temperature in the nozzle was 1000 oC.

摘要-I
Abstract-II
List of Figures-VII
List of Tables-XII
Abbreviations-XIII
Chapter 1 Introduction-1
Chapter 2 Literature review-3
2.1 Introduction of Cu-Zn Alloy-3
2.1.1 Hardness of Cu-Zn Alloy-4
2.1.2 Other Cu-Based Alloys-5
2.2 SOFC with Cu-Based Anode-6
2.2.1 Sintering of SDC Electrolyte-8
2.2.2 Cu-Based Anode for SOFC-9
2.3 Advantages of Metallic 3D Printing-11
2.3.1 Introduction of Different 3D Printing Processes-11
2.3.2 Metal Materials for 3D Printing-13
Chapter 3 Experimental Procedure-24
3.1 Materials-24
3.2 SDC Powder Synthesis-24
3.3 Preparation of Anode Slurry-25
3.4 SOFC Assembly-26
3.5 Assembly of Melt-Extrusion Module-26
3.5.1 Assembly of Barrel-26
3.5.2 Preparation of Castable-27
3.6 Property Characterization-28
3.6.1 Sedimentation Test-28
3.6.2 Particle Size Measurement-29
3.6.3 SEM Analysis-29
3.6.4 Density Measurement-30
3.6.5 Conductivity Measurement-30
3.6.6 Thermal Expansion Analysis-31
3.6.7 XRD Analysis-32
3.6.8 Metallographic Study of Cu-Zn Alloy-32
3.6.9 Test of Oxidation-Resistance-33
3.6.10 Cell Test-35
3.6.11 Thermal Distribution Measurement-36
Chapter 4 Results and Discussion-44
4.1 Properties of Cu-Zn Alloy-44
4.1.1 Electric Property of Cu-Zn Alloy-44
4.1.2 CTE of Cu-Zn Alloy-45
4.1.3 Stability of Cu-Zn Alloy with Electrolyte Oxide-46
4.1.4 Annealing Microstructure and Hardness of Cu-Zn Alloy-47
4.2 Oxidation Kinetics of Cu-Zn Alloy and Other Metals-60
4.2.1 Mass Change during Oxidation Process-60
4.2.2 Activation Energy for Oxidation-61
4.2.3 Oxidation of Cu-Zn Alloy in Protect Atmosphere-63
4.2.4 Microstructure of Oxide Layer-65
4.3 Assembly and Properties of SOFC-81
4.3.1 Solid-State Reaction of SDC Powder-81
4.3.2 Behavior of Sintered SDC Electrolyte-83
4.3.3 Properties of CuO-SDC Slurry and Anode-84
4.3.4 Cell Test and Microstructure-85
4.3.5 Cell Test with Hydrocarbon Fuel-86
4.4 High-Temperature Melt-Extrusion Module-102
4.4.1 Assembly of Melt-Extrusion Module-102
4.4.2 Performance of Heater-103
4.4.3 Module Test-105
(1) Temperature Distribution-105
(2) Extrusion of Cu-Zn Alloy-106
(3) Extrusion Greater than 1100 oC-107
Chapter 5 Conclusions-118
Appendix-120
Reference-124


[1] Fuel Cells, Engines and hydrogen, An Exergy Approach, by F. J. Barclay, John Wily & Sons, Ltd., (2006) USA.
[2] S. P. Jiang, S. H. Chan, “A review of anode materials development in solid oxide fuel cells,” J. Mat. Sci., 39 (2004) 4405-4439.
[3] J. H. Koh, Y. S. Yoo, J. W. Park, H. C. Lim, “Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel,” Solid State Ionics, 149 (2002) 157-166.
[4] R. J. Gorte, S. Park, J. M. Vohs, C. Wang, “Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell,” Adv. Mat., 12 (2000).
[5] J. Laurencin, G. Delette, O. Sicardy, S. Rosini, F. L. Joud, “Impact of ‘redox’ cycles on performances of solid oxide fuel cells: Case of the electrolyte supported cells,” J. Power Sources, 195 (2010) 2747-2753.
[6] H. Yahiro, K. Eguchi, H. Arai, “Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell,” Solid State Ionics, 36 (1989) 71-75.
[7] Fundaments and Technology of Solid Oxide Fuel Cells, by W. C. J. Wei, Kao-Li Publisher, (2013) Taiwan.
[8] H. Yoshida, T. Inagaki, “Effects of additives on the sintering properties of samaria-doped ceria,” J. Alloys and Compounds, 408-412 (2006) 632-636.
[9] X. Zhang, D. P. Cyrille, S. Yick, M. Robertson, O. Kesler, R. Maric, D. Ghosh, “A study on sintering aids for Sm0.2Ce0.8O1.9 electrolyte,” J. Power Sources, 162 (2006) 480-485.
[10] C. Lu, W. L. Worrell, R. J. Gorte, J. M. Vohs, “SOFCs for direct oxidation of hydrocarbon fuels with samaria-doped ceria electrolyte,” J. Electrochemical Soc., 150 (2003) 354-358.
[11] Extrusion, by M. Bauser, G. Sauer, K. Siegert, ASM international publisher (2006).
[12] L. D. Pari, W. Z. Misiolek, “Numerical modeling of copper tube extrusion: process and eccentricity analysis,” J. Manufacturing Sci. Eng., 134 (2012).
[13] M. P. Miles, J. L. Siles, R. H. Wagoner, and K. Narasimhan, “A better sheet formability test,” Metallurgical Transactions, 24A (1993) 1143-1151.
[14] L. S. Selwyn, D. A. Rennie-Bisaillion, N. E. Binnie, “Metal corrosion rates in aqueous treatments for waterlogged wood-metal composites,” Studies In Conservation, 38 (1993) 180-197.
[15] C. S. Cetinarslan, “Effect of cold plastic deformation on electrical conductivity of various materials,” Materials and Design, 30 (2009) 671-673.
[16] J. N. Keuler, L. Lorenzen, S. Miachon, “The dehydrogenation of 2-butanol over copper-based catalysts: optimizing catalyst composition and determining kinetic parameters,” Applied Catalysis A, 218 (2001) 171-180.
[17] F. E. Ford, D. D. Perlmutter, “The kinetics of the brass-catalysed dehydrogenation of sec-butyl alcohol,” Chemical Engineering Science, 19 (1964) 371-378.
[18] J. P. Breen, J. R. H. Ross, “Methanol reforming for fuel-cell applications: development of zirconia-containing Cu-Zn-Al catalysts,” Catalysis Today, 51 (1999) 521-533
[19] Chapter 9 in Foundations of Materials Science and Engineering, by W. F. Smith, J. Hashemi, The McGraw-Hill Companies, Inc., USA (2007).
[20] Total Materia., http://www.keytometals.com/article69.htm.
[21] T. K. G. Namboodhiri, R. S. Chaudhary, B. Prakash, M. K. Agrawal, “The dezincification of brasses in concentrated ammonia,” Corrosion Science, 22 (1982) 1037-1047.
[22] L. Wang, D. Y. Li, “Mechanical, electrochemical and tribological properties of nanocrystalline surface of brass produced by sandblasting and annealing,” Surface and Coatings Technology, 167 (2003) 188-196.
[23] 蕭勝元,金屬之加工軟化與退火硬化,大同大學碩士論文,(2007)
[24] 李欣怡,黃銅退火雙晶與高碳麻田散鐵相變雙晶之奈米顯微組織研究,國立台灣大學博士論文,(2010)
[25] 張以澄,黃銅退火雙晶與機械雙晶之顯微組織研究,國立台灣大學碩士論文,(2012)
[26] H. Turhan, “Adhesive wear resistance of Cu-Sn-Zn-Pb bronze with additions of Fe, Mn, and P,” Materials Letters, 59 (2005) 1463-1469.
[27] L. Robbiola, J. M. Blengino, C. Fiaud, “Morphology and mechanisms of formation of natural patinas on archaeological Cu-Sn alloys,” Corrosion Science, 40 (1998) 2083-2111.
[28] J. B. Singh, W. Cai, P. Bellon, “Dry sliding of Cu-15 wt%Ni-8 wt%Sn bronze: wear behavior and microstructures,” Wear, 263 (2007) 830-841.
[29] P. Kratochvil, J. Mencl, J. Pesicka, S. N. Komnik, “The structure and low temperature strength of the age hardened Cu-Ni-Sn alloys,” Acta Metall., 32 (1984) 1493-1497.
[30] R. F. North, M. J. Pryor, “The influence of corrosion product structure on the corrosion rate of Cu-Ni alloys,” Corrosion Science, 10 (1970) 297-311.
[31] H. Kim, C. Ku, W. L. Worrell, J. M. vohs, R. J. Gorte, “Cu-Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells,” J. Electrochemical Society, 149 (2002) 247-250.
[32] S. McIntosh, J. M. Vohs, R. J. Gorte, “Effect of precious-metal dopants on SOFC anodes for direct utilization of hydrocarbons,” Electrochem. Solid-State Lett., 6 (2003) 240-243.
[33] C. N. Olga, R. J. Gorte, J. M. Vohs, “Comparison of the performance of Cu-CeO2-YSZ and Ni-YSZ composite SOFC anodes with H2, CO, and syngas,” J. Power Sources, 141 (2005) 241-249.
[34] Y. Matsuzaki, I. Yasuda, “The poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part I. Dependence on temperature, time, and impurity concentration,” Solid state ionics, 132 (2000) 261-269.
[35] H. He, R. J. Gorte, J. M. Vohs, “Highly sulfur tolerant Cu-Ceria anode for SOFCs,” Electrochemical and Solid-State Letters, 8 (2005) 279-280.
[36] H. Inaba, H. Tagawa, “Ceria-based solid electrolytes,” Solid State Ionics, 83 (1996) 1-16.
[37] Z. Shao, S. M. Haile, “A high-performance cathode for the next generation of solid-oxide fuel cells,” Nature, 431 (2004) 170-173.
[38] S. Hamakawa, T. Hayakawa, A. P. E. York, T. Tsunoda, Y. S. Yoon, K. Suzuki, M. Shimizu, K. Takehira, “Selective oxidation of propene using an electrochemical membrane reactor with CeO2-based solid electrolyte,” J. Electrochem. Soc., 143 (1996) 1264-1268.
[39] H. Yoshida, K. Miura, J. Fujita, T. Inagaki, “Effect of Gallia addition on the sintering behavior of samaria-doped ceria,” J. Am. Ceram. Soc., 82 (1999) 219-221.
[40] R. Peng, C. Xia, Q. Fu, G. Meng, D. Peng, “Sintering and electrical properties of (CeO2)0.8(Sm2O3)0.1 powders prepared by glycine-nitrate process,” Materials Letters, 56 (2002) 1043-1047.
[41] S. Park, J. M. Vohs, R. J. Horte, “Direct oxidation of hydrocarbons in a solid-oxide fuel cell,” Nature, 404 (2000) 265-267.
[42] S, Jung, C. Lu, H. He, K. Ahn, R. J. Gorte, J. M. Vohs, “Influence of composition and Cu impregnation method on the performance of Cu/CeO2/YSZ SOFC anodes,” J. Power Source, 154 (2006) 42-50.
[43] X. F. Ye, B. Huang, S. R. Wang, Z. R. Wang, L. Xiong, T. L. Wen, “Preparation and performance of a Cu-CeO2-ScSZ composite anode for SOFCs running on ethanol fuel,” J. Power Source, 164 (2007) 203-209.
[44] M. A. Buccheri, A. Singh, J. M. Hill, “Anode- versus electrolyte-supported Ni-YSZ/YSZ/Pt SOFCs: effect of cell design on OCV, performance and carbon formation for the direct utilization of dry methane,” J. Power Source, 196 (2011) 968-976.
[45] R. Raza, X. Wamg, Y. Ma, X. Liu, B. Zhu, “Improved ceria-carbonate composite electrolytes,” J. Hydrogen Energy, 35 (2010) 2684-2688.
[46] X. Wang, Y. Ma, R. Raza, M. Muhammed, B. Zhu, “Novel core-shell SDC/amorphous Na2CO3 nanocomposite electrolyte for low-temperature SOFCs,” Electrochemistry Communications, 10 (2008) 1617-1620.
[47] R. Raza, X. Wang, Y. Ma, B. Zhu, “A nanostructure anode (Cu0.2Zn0.8) for low-temperature solid oxide fuel cell at 400-600 oC,” J. Power Source, 195 (2010) 8067-8070.
[48] Z. Gao, Z. Mao, C. Wang, Z. Liu, “Development of trimetallic Ni-Cu-Zn anode for low temperature solid oxide fuel cells with composite electrolyte,” J. Hydrogen Energy, 35 (2010) 2897-2904.
[49] C. Lu, W. L. Worrell, J. M. Vohs, R. J. Gorte, “A comparison of Cu-ceria-SDC and Au-ceria-SDC composites for SOFC Anodes,” J. Electrochemical Society, 150 (2003) 1357-1359.
[50] S. I. Lee, K. Ahn, J. M. Vohs, R. J. Gorte, “Cu-Co bimetallic anodes for direct utilization of methane in SOFCs,” Electrochemical and Solid-State Letters, 8 (2005) 48-51.
[51] S. I. Lee, J. M. Vohs, R. J. Gorte, “A study of SOFC anodes based on Cu-Ni and Cu-Co bimetallics in CeO2-YSZ,” J. Electrochemical Society, 151 (2004) 1319-1323.
[52] X. C. Lu, J. H. Zhu, “Cu(Pd)-impregnated La0.75Sr0.25Cr0.5Mn0.5O3-

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top