跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 04:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉承昀
研究生(外文):Cheng-Yun Liu
論文名稱:前瞻性材料的機械性質—以熱電材料與金屬玻璃為例
論文名稱(外文):Investigation of Mechanical Properties of Frontier Materials, Including Thermoelectric Materials and Metallic Glass
指導教授:薛承輝
指導教授(外文):Chun-Hway Hsueh
口試委員:莊東漢黃坤祥朱瑾
口試日期:2015-07-01
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:83
中文關鍵詞:熱電材料孔隙率機械性質金屬玻璃剪切帶剪刀剪切有限元素模擬
外文關鍵詞:thermoelectric materialsporositymechanical propertiesmetallic glassshear bandscissors cuttingfinite element simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
金屬玻璃的獨特性質,使其可成為熱電材料模組的擴散阻障層,因此瞭解這兩種不同材料的機械性質,是往後將此結合在一起的關鍵。本論文分成兩部分,第一部分研究熱電材料的常溫機械性質,包括N型的ZrNiSn與P型的Tetrahedrite。第二部分以獨特的形變方法研究帶狀金屬玻璃的剪切帶形成機制。
在探討N型ZrNiSn系統之機械性質的研究中,不同的粉末製備方式以及不同的燒結溫度被用來製造不同的微結構與孔隙率,此兩種因素對機械性質的影響皆在此論文被探討。實驗結果發現材料的彈性模數隨著孔隙率呈指數遞減。另外多餘的鎳含量也在本實驗中被鑑定出,使ZrNiSn的理論密度上升。在高能球磨之粉末製成的試片擁有較高的楊氏模數,可歸因於antisite defect的生成。P型Tetrahedrite熱電材料的常溫機械性質亦被研究。天然礦物的tetrahedrite以及50%天然礦物50%合成元素的化合物都被納入探討。Slow crack growth的現象也在本篇論文中被探討,在放置於高濕度環境長達兩個禮拜的過程中,並沒有顯著的裂縫成長被發現。另外運用SiC與graphene nanoplatelet提升破壞韌性的方法也在此論文中被嘗試使用。
金屬玻璃因為其非晶特性帶來的許多優異性質,被學界與業界所重視。塊狀的金屬玻璃擁有良好的彈性形變範圍,接近理論值的強度,其抗腐蝕性,抗磨耗性更優於一般金屬。他擁有玻璃轉換溫度,可以在過冷液相區對其輕易的加工,開展了金屬二次加工的另一種可能。然而,縱使具有種種的優越性能,金屬玻璃受限於他微乎其微的塑性變形能力,使得它在破壞時,幾乎都是粉碎式的破壞。金屬玻璃由於其非晶的特性,無法用傳統結晶金屬的差排理論來解釋其塑性變形機制,他的塑性變形能力是由剪切帶的成核與成長所控制。本篇論文第二部分將運用特殊的剪刀形變方式,在帶狀鐵基金屬玻璃上製造出規則的剪切帶,並配合有限元素法模擬材料的受力狀況,分析驅動剪切帶成核與成長的機制。期望能從本質上提升金屬玻璃的塑性變形能力。


Metallic glasses have unique properties that can be served as a diffusion barrier and can be put in thermoelectric devices. The investigation of the basic mechanical properties of both materials is implemented in this thesis for the promising combination of these two materials in the future.
In the first part of this thesis, the room temperature mechanical properties of N-type ZrNiSn and P-type tetrahedrite systems were investigated. To study the mechanical properties of ZrNiSn, different powder processing methods and sintering temperatures were applied to introduce different porosities and microstructures. The elastic moduli were measured by analyzing the resonant ultrasonic spectra, and they were found to decrease exponentially as the porosity increased. Excess Ni has been characterized to cause the elevation of theoretical density of the material. The high energy ball milled specimens had higher Young’s modulus with the antisite defect introduced by this processing method.
The room temperature mechanical properties of tetrahedrite system were also investigated, including natural mineral and 50-50 natural synthetic tetrahedrite. Slow crack growth behavior was monitored in this study. There was no obvious crack growth even in the high humidity environment. Experiments of adding SiC nanoparticles and graphene nanoplatelet into the tetrahedrite as promising strategies to enhance the fracture toughness were performed. However, no distinct improvement was found in this study.
In the second part of this thesis, the unique deformation method, scissors cutting was applied to Fe-based metallic glass ribbon, and the corresponding shear band behavior was characterized with the aid of finite element simulations. Metallic glass alloys exhibit impressive mechanical properties including large elastic strain to failure and high tensile strength resulting from their amorphous nature that have attracted people’s attention to this new generation of material. However, their plasticity is dominated by the shear band behavior and always appears to be nearly brittle. A regular shear band patter was observed after the scissors cutting reached a steady-state. The result indicates that the shear band shows its stability under specific stress state. Furthermore, the result provides a simple and attainable way to control shear banding. The finite element analysis was performed to simulate the stress field resulting from cutting the metallic glass ribbon. The result verified that the shear band formation is controlled by the shear stress.



口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xii
Chapter 1 Preface 1
1.1 Motivation of the study 1
1.2 Objectives 1
1.2.1Thermoelectric materials 1
1.2.2Metallic glass 2
Chapter 2 Room temperature mechanical properties of intermetallic thermoelectric material ZrNiSn 4
2.1 Introduction 4
2.1.1 Thermoelectric material 4
2.1.2 Half-Heusler compound as a thermoelectric material 7
2.2 Experimental procedure 8
2.2.1 Specimen preparation 8
2.2.2 Pulsed electric current sintering (PECS) 10
2.2.3 Microstructure analysis 11
2.2.4 Elastic modulus measurement 13
2.2.5 Hardness measurement 13
2.3 Results and discussion 14
2.3.1 Microstructure and phase analysis 14
2.3.2 Elastic modulus results 22
2.3.3 Hardness results 25
2.3.4 Comparison to literature values for elastic moduli and hardness 27
2.4 Summary and conclusions 30
Chapter 3 Mechanical properties of natural mineral tetrahedrite Cu12Sb4S13 and the strategies to enhance the fracture toughness 32
3.1 Introduction 32
3.1.1 Natural mineral thermoelectric material tetrahedrite Cu12Sb4S13 32
3.1.2 Slow crack growth behavior 33
3.1.3 Strategy to enhance the fracture toughness of brittle material 34
3.2 Experimental procedure 36
3.2.1 Specimen preparation for room temperature mechanical properties investigation and slow crack growth study 36
3.2.2 Room temperature mechanical properties testing, microstructure and phase analysis 38
3.2.3 Slow crack growth behavior 38
3.2.4 Nano particles additive in thermoelectric material 39
3.3 Results and discussion 40
3.3.1 Room temperature mechanical properties of natural mineral tetrahedrite, microstructure and phase analysis 40
3.3.2 Slow crack growth behavior 43
3.3.3 Nano particles additive in the brittle matrix 45
3.4 Summary and conclusions 47
Chapter 4 Characterization of regular shear bands in metallic glass ribbon using unique deformation method 49
4.1 Introduction 49
4.1.1 Metallic glass and its plasticity 49
4.1.2 Unique deformation method 54
4.1.3 Scissors cutting and guillotining methods 57
4.2 Experimental procedure 59
4.2.1 Experimental setup for guillotining test 59
4.2.2 Experimental setup for scissors cutting test 60
4.2.3 Finite element modeling 62
4.3 Results and discussion 64
4.3.1 Guillotining of metallic glass ribbon 64
4.3.2 Scissors cutting of metallic glass ribbon 65
4.3.3 Finite element analysis 71
4.4 Summary and conclusions 74
REFERENCES 76



[1] D.M. Rowe, CRC handbook of thermoelectrics, CRC press, 1995.
[2] F.J. DiSalvo, Science, 285 (1999) 703-706.
[3] G.J. Snyder, E.S. Toberer, Nature materials, 7 (2008) 105-114.
[4] K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, Nature, 489 (2012) 414-418.
[5] H. Lee, D. Vashaee, D. Wang, M.S. Dresselhaus, Z. Ren, G. Chen, Journal of Applied Physics, 107 (2010) 094308.
[6] X. Fan, E.D. Case, F. Ren, Y. Shu, M.J. Baumann, Journal of the Mechanical Behavior of Biomedical Materials, 8 (2012) 99-110.
[7] L.J. Vandeperre, J. Wang, W.J. Clegg †, Philosophical Magazine, 84 (2004) 3689-3704.
[8] C. Fu, H. Xie, Y. Liu, T.J. Zhu, J. Xie, X.B. Zhao, Intermetallics, 32 (2013) 39-43.
[9] T.P. Hoepfner, E.D. Case, Ceramics International, 29 (2003) 699-706.
[10] E. Case, Journal of Elec Materi, 41 (2012) 1811-1819.
[11] A.L. Pilchak, F. Ren, E.D. Case, E.J. Timm, H.J. Schock, C.I. Wu, T.P. Hogan, Philosophical Magazine, 87 (2007) 4567-4591.
[12] S. Populoh, M.H. Aguirre, O.C. Brunko, K. Galazka, Y. Lu, A. Weidenkaff, Scripta Materialia, 66 (2012) 1073-1076.
[13] Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G.P. Meisner, C. Uher, Applied Physics Letters, 79 (2001) 4165-4167.
[14] P. Qiu, J. Yang, X. Huang, X. Chen, L. Chen, Applied Physics Letters, 96 (2010) 152105.
[15] C. Yu, T.-J. Zhu, R.-Z. Shi, Y. Zhang, X.-B. Zhao, J. He, Acta Materialia, 57 (2009) 2757-2764.
[16] N. Shutoh, S. Sakurada, Journal of Alloys and Compounds, 389 (2005) 204-208.
[17] H.-H. Xie, C. Yu, T.-J. Zhu, C.-G. Fu, G. Jeffrey Snyder, X.-B. Zhao, Applied Physics Letters, 100 (2012) 254104.
[18] L.-D. Zhao, B.-P. Zhang, J.-F. Li, M. Zhou, W.-S. Liu, J. Liu, Journal of Alloys and Compounds, 455 (2008) 259-264.
[19] E. Case, J. Smyth, V. Monthei, Journal of the American Ceramic Society, 64 (1981) C‐24-C‐25.
[20] A. Migliori, J.L. Sarrao, Resonant ultrasound spectroscopy: applications to physics, materials measurements, and nondestructive evaluation, Wiley, 1997.
[21] F. Ren, E.D. Case, A. Morrison, M. Tafesse, M.J. Baumann, Philosophical Magazine, 89 (2009) 1163-1182.
[22] J.B. Wachtman, W.R. Cannon, J. Matthewson, Mechanical Properties of Ceramics, Wiley, 2009.
[23] M. Barsoum, W. Barsoum, Fundamentals of Ceramics, Taylor & Francis, 2002.
[24] R.M. German, Sintering Theory and Practice, Wiley, 1996.
[25] V.A. Romaka, P. Rogl, V.V. Romaka, Y.V. Stadnyk, E.K. Hlil, V.Y. Krajovskii, A.M. Horyn, Semiconductors, 47 (2013) 892-898.
[26] H. Muta, T. Kanemitsu, K. Kurosaki, S. Yamanaka, Materials transactions, 47 (2006) 1453-1457.
[27] J. Germond, (2010).
[28] H.-H. Xie, J.-L. Mi, L.-P. Hu, N. Lock, M. Chirstensen, C.-G. Fu, B.B. Iversen, X.-B. Zhao, T.-J. Zhu, CrystEngComm, 14 (2012) 4467-4471.
[29] R. Downie, D. MacLaren, J.-W. Bos, Journal of Materials Chemistry A, 2 (2014) 6107-6114.
[30] R.W. Rice, Porosity of Ceramics: Properties and Applications, Taylor & Francis, 1998.
[31] X. Fan, E.D. Case, Q. Yang, J.D. Nicholas, Ceramics International, 39 (2013) 6877-6886.
[32] F. Ren, E.D. Case, J.E. Ni, E.J. Timm, E. Lara-Curzio, R.M. Trejo, C.H. Lin, M.G. Kanatzidis, Philosophical Magazine, 89 (2009) 143-167.
[33] R.W. Rice, Mechanical Properties of Ceramics and Composites: Grain And Particle Effects, Taylor & Francis, 2000.
[34] M. Hichour, D. Rached, R. Khenata, M. Rabah, M. Merabet, A.H. Reshak, S.B. Omran, R. Ahmed, Journal of Physics and Chemistry of Solids, 73 (2012) 975-981.
[35] A. Hamidani, B. Bennecer, B. Boutarfa, Materials Chemistry and Physics, 114 (2009) 732-735.
[36] R. Krein, M. Friak, J. Neugebauer, M. Palm, M. Heilmaier, Intermetallics, 18 (2010) 1360-1364.
[37] U. Prakash, G. Sauthoff, Intermetallics, 9 (2001) 107-112.
[38] M.A. Verges, P.J. Schilling, P. Upadhyay, W.K. Miller, R. Yaqub, K.L. Stokes, P.F. Poudeu, Science of Advanced Materials, 3 (2011) 659-666.
[39] X. Lu, D.T. Morelli, MRS Communications, 3 (2013) 129-133.
[40] X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, C. Uher, Advanced Energy Materials, 3 (2013) 342-348.
[41] C. Benaqqa, J. Chevalier, M. Saädaoui, G. Fantozzi, Biomaterials, 26 (2005) 6106-6112.
[42] A. Ridruejo, J.Y. Pastor, J. LLorca, A. Sayir, V. Orera, Journal of the American Ceramic Society, 88 (2005) 3125-3130.
[43] R. Bermejo, P. Supancic, C. Krautgasser, R. Morrell, R. Danzer, Engineering Fracture Mechanics, 100 (2013) 108-121.
[44] M. Parchovianský, D. Galusek, J. Sedláček, P. Švančárek, M. Kašiarová, J. Dusza, P. Šajgalík, Journal of the European Ceramic Society, 33 (2013) 2291-2298.
[45] J. Perez-Rigueiro, J. Pastor, J. Llorca, M. Elices, P. Miranzo, J. Moya, Acta materialia, 46 (1998) 5399-5411.
[46] R.D. Schmidt, X. Fan, E.D. Case, P.B. Sarac, Journal of Materials Science, 50 (2015) 4034-4046.
[47] J. Liu, H. Yan, M.J. Reece, K. Jiang, Journal of the European Ceramic Society, 32 (2012) 4185-4193.
[48] L.S. Walker, V.R. Marotto, M.A. Rafiee, N. Koratkar, E.L. Corral, Acs Nano, 5 (2011) 3182-3190.
[49] J. Liu, H. Yan, K. Jiang, Ceramics International, 39 (2013) 6215-6221.
[50] Stefano Fine Minerals, Inc., Ann Arbor, Michigan, USA.
[51] X. Fan, E.D. Case, X. Lu, D.T. Morelli, Journal of Materials Science, 48 (2013) 7540-7550.
[52] J. Liu, Z. Li, H. Yan, K. Jiang, Advanced Engineering Materials, 16 (2014) 1111-1118.
[53] C. S. Chen, P. Yiu, C. L. Li, J. P. Chu, C. H. Shek, C. H. Hsueh, Materials Science and Engineering A, 608 (2014) 258-264.
[54] C. W. Wang, P. Yiu, J. P. Chu, C. H. Shek, C. H. Hsueh, Journal of Materials Science, 50 (2015) 2085-2092.
[55] A.R. Yavari, J. Lewandowski, J. Eckert, Mrs Bulletin, 32 (2007) 635638.
[56] C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Materialia, 55 (2007) 40674109.
[57] A. Inoue, Acta materialia, 48 (2000) 279-306.
[58] W. Johnson, Jom, 54 (2002) 40-43.
[59] A. Argon, Acta metallurgica, 27 (1979) 47-58.
[60] F. Spaepen, Acta metallurgica, 25 (1977) 407-415.
[61] C.A. Pampillo, Journal of Materials Science, 10 (1975) 11941227.
[62] V. Bengus, E. Tabachnikova, J. Miškuf, K. Csach, V. Ocelik, W. Johnson, V. Molokanov, Journal of materials science, 35 (2000) 4449-4457.
[63] Y. Kawamura, T. Nakamura, K.B. Kim, Materials science forum, Trans Tech Publ, 1999, pp. 349-354.
[64] D. Turnbull, M.H. Cohen, The Journal of chemical physics, 34 (1961) 120-125.
[65] A. Taub, F. Spaepen, Acta Metallurgica, 28 (1980) 1781-1788.
[66] K.M. Flores, R.H. Dauskardt, Journal of materials research, 14 (1999) 638-643.
[67] B. Yang, P. Liaw, G. Wang, M. Morrison, C. Liu, R. Buchanan, Y. Yokoyama, Intermetallics, 12 (2004) 1265-1274.
[68] Y. Zhang, A. Greer, Applied physics letters, 89 (2006) 1907.
[69] J. Lewandowski, A. Greer, Nature materials, 5 (2006) 15-18.
[70] W. Jiang, M. Atzmon, Acta Materialia, 51 (2003) 4095-4105.
[71] H. Chen, Y. He, G. Shiflet, S. Poon, Nature, 367 (1994) 541-543.
[72] R. Bhowmick, R. Raghavan, K. Chattopadhyay, U. Ramamurty, Acta materialia, 54 (2006) 4221-4228.
[73] Y. Zhang, H. Hahn, Journal of Alloys and Compounds, 488 (2009) 65-71.
[74] Z. Zhang, J. Eckert, L. Schultz, Acta Materialia, 51 (2003) 1167-1179.
[75] Z. Zhang, G. He, J. Eckert, L. Schultz, Physical review letters, 91 (2003) 045505.
[76] J. Zhao, F. Wu, Z. Zhang, Materials Science and Engineering: A, 527 (2010) 6224-6229.
[77] R. Conner, W.L. Johnson, N. Paton, W. Nix, Journal of applied physics, 94 (2003) 904-911.
[78] F. Wu, Z. Zhang, J. Shen, S. Mao, Acta Materialia, 56 (2008) 894-904.
[79] H. Leamy, T. Wang, H. Chen, Metallurgical Transactions, 3 (1972) 699-708.
[80] M.D. Demetriou, M.E. Launey, G. Garrett, J.P. Schramm, D.C. Hofmann, W.L. Johnson, R.O. Ritchie, Nature materials, 10 (2011) 123-128.
[81] H. Kimura, T. Masumoto, Philosophical Magazine A, 44 (1981) 1005-1020.
[82] H. Kimura, T. Masumoto, Philosophical Magazine A, 44 (1981) 1021-1030.
[83] A. Alpas, L. Edwards, C. Reid, Acta Metallurgica, 35 (1987) 787-796.
[84] Y. Huang, D. Wang, H. Fan, J. Sun, J. Shen, J. Mi, Materials Science and Engineering: A, 561 (2013) 220-225.
[85] L. Liu, L. Dai, Y. Bai, B. Wei, J. Eckert, Journal of materials research, 21 (2006) 153-160.
[86] R. Guduru, K. Darling, R. Scattergood, C. Koch, K. Murty, M. Bakkal, A. Shih, Intermetallics, 14 (2006) 1411-1416.
[87] F. Wu, Z. Zhang, F. Jiang, J. Sun, J. Shen, S. Mao, Applied physics letters, 90 (2007) 191909.
[88] J.T. Fan, T. Fu, Materials Letters, 74 (2012) 232235.
[89] L. Chen, Q. Ge, S. Qu, Q. Jiang, X. Nie, J. Jiang, Applied Physics Letters, 92 (2008) 211905.
[90] W. Wu, C. Zhang, Y. Zhang, K. Zeng, Y. Li, Intermetallics, 16 (2008) 1190-1198.
[91] S. Chen, K. Chan, L. Xia, Intermetallics, 43 (2013) 38-44.
[92] P. Yiu, C.H. Hsueh, C.H. Shek, Materials Letters, 136 (2014) 353-355.
[93] P. Yiu, Y.C. Chen, J.P. Chu, S.Y. Chang, H. Bei, J.S.C. Jang, C.H. Hsueh, Intermetallics, 34 (2013) 43-48.
[94] P. Yiu, J.S.C. Jang, S.Y. Chang, Y.C. Chen, J.P. Chu, C.H. Hsueh, Journal of Alloys and Compounds, 525 (2012) 68-72.
[95] C.H. Hsueh, H. Bei, C.T. Liu, P.F. Becher, E.P. George, Scripta Materialia, 59 (2008) 111-114.
[96] C.H. Hsueh, H. Bei, C.T. Liu, E.P. George, P.F. Becher, Intermetallics, 17 (2009) 802-810.
[97] A. Atkins, Y. Mai, Journal of Materials Science, 14 (1979) 2747-2754.
[98] P. Lucas, B. Pereira, Functional Ecology, (1990) 819-822.
[99] P.W. Lucas, L. Copes, P.J. Constantino, E.R. Vogel, J. Chalk, M. Talebi, M. Landis, M. Wagner, International Journal of Primatology, 33 (2012) 598-610.
[100] P.W. Freeman, C.A. Lemen, Journal of Zoology, 271 (2007) 469-476.
[101] B. Darvell, P. Lee, T. Yuen, P. Lucas, Measurement Science and Technology, 7 (1996) 954.
[102] M. Mahvash, A.M. Okamura, Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005. World Haptics 2005. First Joint, IEEE, 2005, pp. 356-362.
[103] A.M. Okamura, R.J. Webster III, J.T. Nolin, K. Johnson, H. Jafry, Robotics and Automation, 2003. Proceedings. ICRA''03. IEEE International Conference on, IEEE, 2003, pp. 828-833.
[104] M. Mahvash, L.M. Voo, D. Kim, K. Jeung, J. Wainer, A.M. Okamura, Biomedical Engineering, IEEE Transactions on, 55 (2008) 848-856.
[105] ABAQUS V6.12 User''s Manual,.
[106] J. Zhao, Z. Zhang, Materials Science and Engineering: A, 586 (2013) 123-132.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文