跳到主要內容

臺灣博碩士論文加值系統

(3.236.28.137) 您好!臺灣時間:2021/07/25 21:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周士凱
研究生(外文):Shih-Kai Chou
論文名稱:使用三種填料真空硬銲Inconel 600之研究
論文名稱(外文):The Study of Vacuum Brazing Inconel 600 Using Three Fillers
指導教授:薛人愷
口試委員:蔡履文林新智
口試日期:2015-07-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:73
中文關鍵詞:銅填料鎳基填料鎳鐵基填料鎳基合金顯微結構剪力強度
外文關鍵詞:Cu fillerNi-based fillerNi/Fe-based fillerNi-based alloyMicrostructureShear strength
相關次數:
  • 被引用被引用:1
  • 點閱點閱:97
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
板式熱交換器具有體積小、熱交換能力佳的優點,近年來在需要高效能散熱的領域中使用廣泛;其中,硬銲製程的技術是提升板式熱交換器性能的關鍵。目前板式熱交換器所使用的成熟技術,是以銅箔填料硬銲接合不鏽鋼,然而銅的抗蝕性較差,無法用在嚴苛的環境中;而為了改善抗蝕性而發展出的Inconel 625等材料製作的新式板式熱交換器,雖然可克服抗蝕性的問題,但依然有成本過高或耐壓性不足的問題。此篇研究以Inconel 600鎳基合金以Cu、VZ2106、MBF51三種填料進行硬銲接合,期望可以找出成本較低,且能抗蝕、耐高壓的新材料組合,幫助改善現有的材料製程。結果顯示以VZ2106或MBF51硬銲接合的銲道中,雖然產生BCr硼化物,但並未對銲道的機械強度或韌性產生嚴重影響,使此銲道具有接近Inconel 600基材的良好強度,為製作新式板式熱交換器可選擇的填料合金之一。

The plate heat exchanger is featured with compact size as well as high efficiency, so it is widely applied in the field of high-performance heat exchanger. The technology of brazing is one of the most important factors to improve performance of heat exchanger. The plate heat exchanger is currently made by Cu brazing stainless steels for most major heat exchanger manufacturers in the world. However, Cu cannot be used in severely corrosive environment due to its insufficient corrosion resistance. Other alloy such as Inconel 625 has good corrosion resistance, but it is suffered from high cost or insufficient pressure resistance. In this research, three kinds of fillers, Cu foil, Ni/Fe-based VZ2106 foil, and Ni-based MBF51 foil, are applied in brazing Inconel 600 substrate in order to develop novel plate heat exchangers featured with low cost, high pressure resistance and high corrosion resistance. Based on the experimental result, Inconel600/VZ2106/Inconel600 and Inconel 600/MBF51/Inconel 600 brazed joints include BCr precipitates, but brazed joints still have good bonding strength. The mechanical strength of VZ2106 and MBF51 brazed joints are close to that of Inconel 600 substrate, so they are good filler alloys applied in making novel plate heat exchangers.

摘要 I
Abstract II
目錄 1
圖目錄 3
表目錄 6
第一章 前言 7
第二章 文獻回顧 8
2-1 Inconel 600基材簡介 8
2-2 接合製程 8
2-3 硬銲 9
2-4 影響硬銲接合強度的因素 10
2-5 接合研究發展概況 11
2-6 熱交換器 12
2-7 相關研究 13
第三章 實驗方法與步驟 18
3-1 IN-600基材與三種填料的硬銲接合製程 18
3-1-1 基材前處理 18
3-1-2 填料參數 18
3-1-3 真空爐高溫硬銲 18
3-2 剪力試驗 19
3-3 SEM顯微組織分析 19
3-4 EPMA定量分析 20
第四章 使用純Cu填料硬銲接合IN-600合金 24
4-1 IN-600/Cu/IN-600硬銲接合銲道分析 24
4-1-1 IN-600/Cu/IN-600硬銲於1140oC 24
4-1-2 IN-600/Cu/IN-600硬銲於1170oC 25
4-1-3 IN-600/Cu/IN-600硬銲於1200oC 25
4-1-4 IN-600/Cu/IN-600成分擴散深度分析 25
4-2 IN-600/Cu/IN-600銲點剪力試驗 26
第五章 使用VZ2106填料硬銲接合IN-600合金 40
5-1 IN-600/VZ2106/IN-600硬銲接合銲道分析 40
5-1-1 IN-600/VZ2106/IN-600硬銲於1180oC 40
5-1-2 IN-600/VZ2106/IN-600硬銲持溫30分鐘 41
5-1-3 IN-600/VZ2106/IN-600成分擴散深度分析 42
5-2 IN-600/VZ2106/IN-600銲點剪力試驗 42
第六章 使用MBF51填料硬銲接合IN-600合金 56
6-1 IN-600/MBF51/IN-600硬銲接合銲道分析 56
6-1-1 IN-600/MBF51/IN-600硬銲於1180oC 56
6-1-2 IN-600/MBF51/IN-600硬銲持溫30分鐘 57
6-2 IN-600/MBF51/IN-600銲點剪力試驗 58
第七章 結論 68
7-1 IN-600與Cu填料硬銲接合製程 68
7-2 IN-600與VZ2106填料硬銲接合製程 68
7-3 IN-600與MBF51填料硬銲接合製程 69
參考文獻 71


1.W.F. Smith, Structure and Properties of Engineering Alloys, McGraw-Hill Science/Engineering/Math, 1993.
2.G. Humpston, D.M. Jacobson, Principles of Brazing, ASM International, 2005.
3.M. Schwartz, Brazing Second Edition, ASM International, 2003.
4.R.D. Milner, A Survey of the Scientific Principles Related to Wetting and Spreading, Brit. Weld J., Vol. 5, 1958, pp. 90-105.
5.D.L. Olson, T.A. Siewert, S. Liu, G.R. Edwards, ASM Handbook Volume 6: Welding, Brazing, and Soldering 10th Edition, ASM International, 1990.
6.C.S. Wu, H.L. Wang, Y.M. Zhang, Numerical analysis of the temperature profiles and weld dimension in high power direct-diode laser welding. Computational Materials Science, 2009. 46(1): p. 49-56.
7.C.H. Lee, K.H. Chang, Three-dimensional finite element simulation of residual stresses in circumferential welds of steel pipe including pipe diameter effects. Materials Science and Engineering: A, 2008. 487(1–2): p. 210-218.
8.D. Deng, H. Murakawa, Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Computational Materials Science, 2006. 37(3): p. 269-277.
9.C.D. Elcoate, R.J. Dennis, P.J. Bouchard, M.C. Smith, Three dimensional multi-pass repair weld simulations. International Journal of Pressure Vessels and Piping, 2005. 82(4): p. 244-257.
10.劉盈成,〈使用Sysweld進行銲件殘餘熱應力及變形之研究〉,國立臺灣大學,2014。
11.S. Wang, X. Wu, Investigation on the microstructure and mechanical properties of Ti–6Al–4V alloy joints with electron beam welding. Materials & Design, 2012. 36(0): p. 663-670.
12.Y. Peng, K.H. Wang, Q. Zhou, Y.J. Wang, P.F. Fu, Beam quality test technology and devices of electron beam welding. Vacuum, 2011. 86(3): p. 261-266.
13.T. Wang, B. Zhang, G. Chen, J. Feng, Q. Tang, Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with copper interlayer sheet. Transactions of Nonferrous Metals Society of China, 2010. 20(10): p. 1829-1834.
14.G. Padmanaban, V. Balasubramanian, Effects of laser beam welding parameters on mechanical properties and microstructure of AZ31B magnesium alloy. Transactions of Nonferrous Metals Society of China, 2011. 21(9): p. 1917-1924.
15.R. Li, Z. Li, Y. Zhu, L. Rong, A comparative study of laser beam welding and laser–MIG hybrid welding of Ti–Al–Zr–Fe titanium alloy. Materials Science and Engineering: A, 2011. 528(3): p. 1138-1142.
16.S. Yan, Z. Hong, T. Watanabe, T. Jingguo, CW/PW dual-beam YAG laser welding of steel/aluminum alloy sheets. Optics and Lasers in Engineering, 2010. 48(7–8): p. 732-736.
17.K. Thulukkanam, Heat exchanger design handbook, CRC Press, 2013.
18.W. Pirompugd, C. Wang, S. Wongwises, A review on reduction method for heat and mass transfer characteristics of fin-and-tube heat exchangers under dehumidifying conditions, International Journal of Heat and Mass Transfer, 2009. 52: p. 2370-2378.
19.L. Sheik Ismail, R. Velraj, C. Ranganayakulu, Studies on pumping power in terms of pressure drop and heat transfer characteristics of compact plate-fin heat exchangers—A review, Renewable and Sustainable Energy Reviews, 2010. 14: p. 478-485.
20.S.S. Zhang, Y.H. Cheng, L. Cheng, A Study on Vacuum Brazing Procedure of Plate Heat Exchanger, Materials Science Forum, 2004. 471-472: p. 640-643.
21.W.S. Chen, R.K. Shiue, Brazing Inconel 625 Using Two Ni/(Fe)-based Amorphous Filler Foils, Metallurgical and Materials Transaction A, 2012. 43A: p. 2177-2182.
22.A. Khorram, M. Ghoreishi, Comparative study on laser brazing and furnace brazing of Inconel 718 alloys with silver based filler metal, Optics & Laser Technology, 2015. 68: p. 165-174.
23.R.K. Roy, A.K. Panda, S.K. Das, Govind, A. Mitra, Development of a copper-based filler alloy for brazing stainless steels, Materials Science and Engineering A, 2009. 523: p. 312-315.
24.G. Srinivasan, A.K. Bhaduri, S.K. Ray, V. Shankar, Vacuum brazing of Inconel 600 sleeve to 316L stainless steel sheath of mineral insulated cable, Journal of materials processing technology, 2008. 198: p.73-76.
25.吳政淵,〈IN738鎳基超合金硬銲修補之研究〉,國立臺灣大學,2006。
26.陳威宇,〈超合金真空硬銲修補之研究〉,國立臺灣大學,2009。
27.徐正和,〈使用鎳基填料硬銲兩種金屬基材之研究〉,國立臺灣大學,2012。
28.陳文祥,〈高性能板式熱交換器硬銲製程之研究〉,國立臺灣大學,2012。
29.王正彥,〈使用兩種填料真空硬銲Incoloy 800之研究〉,國立臺灣大學,2014。
30.P. Villars, A. Prince, H. Okamoto, Handbook of Ternary Alloy Phase Diagrams, ASM International, 1995.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top