跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 08:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳妤涵
研究生(外文):Yu-Han Chen
論文名稱:中溫型燃料電池鉍基陰極之合成、材料特性及電性研究
論文名稱(外文):Synthesis, Materials and Electric Conductive Properties of Bi-based Cathodes for IT-SOFC
指導教授:韋文誠韋文誠引用關係
指導教授(外文):Wen-Cheng J. Wei
口試委員:郭俞麟詹鎮鋒
口試委員(外文):Yu-Lin KuoChen-Feng Chan
口試日期:2015-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:111
中文關鍵詞:導電率陰極鈣鈦礦X射線光電子光譜導電機制
外文關鍵詞:conductivitycathodeperovskiteXPSconduction mechanism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:59
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鑭鍶鈷鐵、鐠鍶鈷鐵及鐵酸鉍基陰極氧化物以EDTA-檸檬酸螯合法合成,其中鑭鍶鈷鐵也以膠粒製程的方法合成,作為對照組。利用掃描式電子顯微鏡的定量成分分析,比較兩種方法產製粉末的均勻性。使用定量X光繞射分析,進行鈷元素摻雜量產生的雜相,以及在高達20mol%的鉍鍶鐵中的固溶極限,以提高其總導電率。此外,為了獲得適當的陰極孔隙率,本研究也進行陰極在不同燒結溫度下的燒結曲線型態,和陰極所產生的裂痕量的關係。 對於陰極導電的機制也進行了解,以總導電率、X射線光電子光譜(XPS),以及熱重分析進行分析。導電率的結果顯示,鈷元素的含量越多,其導電率也越高。最後,X射線光電子光譜結果顯示,本實驗製備的陰極材料表面在室溫下都是以Fe3+離子存在,表面氧空缺以鉍基陰極材料為最多,因此高溫離子導電效能會明顯較佳。

M0.6Sr0.4Co0.2Fe0.8O3 (M=La, Pr, Bi) and BiFeO3-based cathodes were synthesized by a modified EDTA-citrate method. One La0.6Sr0.4Co0.2Fe0.8O3 was synthesized by colloidal mixing/solid state sintering, and used as a comparable case. In order to study the homogeneity, two La0.6Sr0.4Co0.2Fe0.8O3 powders were densified and analyzed by quantitative EDS. More work of quantitative XRD was done to analyze the impurity phases and the solid solution limit of Co-doping, so to increase the total conductivity of the BiFeO3 cathodes. Besides, the porosity of cathode needs control by sintering, of which the behavior has been investigated on sintering curves and correlates to the crack formation in cathode layer. Conduction mechanisms (double exchange, small polaron, and oxygen ions conduction) are studied by measuring total conductivity, X-ray photoelectron spectroscopy (XPS) and TGA analyses on two series cathodes, LnSCF6428 series and BiFeO3 based cathodes. The more the cobalt content is, the higher the conductivity. The results of XPS showed tjat dense and porous Bi0.7Sr0.3Co0.04Fe0.96O3 at room temperature were mainly Fe3+ and oxygen vacancies on surface, implying ionic conductivity would dominate at high temperature.

Contents
口試委員會審定書 
致謝 
中文摘要 
英文摘要 
List of Figures 
List of Tables 
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2.1 Development of Cathode Materials 4
2.2 Cathode Requirement 6
2.3 Structure of Characteristic of Perovskite 6
2.3.1 Crystal Structure 7
2.3.2 Goldschmidt Tolerance Factor of Perovskite Structure 7
2.3.3 Critical Radius of Perovskite Structure 8
2.3.4 Conductivity Behavior for A/B Site Doping 8
2.4 Bismuth-based Compound 10
2.4.1 Properties of Bismuth Ions 10
2.4.2 Properties of Bismuth-based Cathodes 10
2.5 EDTA-citrate Method for Ceramic Powder 11
Chapter 3 Experimental Procedure 20
3.1 Materials 20
3.2 Preparation of Cathode Materials 20
3.2.1 Synthesis of EDTA-citrate method 20
3.2.2 Synthesis by Colloidal Method 21
3.2.3 Die-Pressing 21
3.2.4 Sintering 21
3.2.5 Preparation of Half Cells 21
3.2.6 Assembly of Single Cells 22
3.3 Material Characterization 23
3.3.1 X-ray Diffraction 23
3.3.2 Quantitative Analysis of EDS 23
3.3.3 Density Measurement 24
3.3.4 Thermal Expansion Analysis (TMA) 24
3.3.5 Microstructural Characterization 25
3.3.6 Surface Area Analysis 25
3.3.7 XPS Analysis 25
3.3.8 Conductivity Measurement 26
3.3.9 Thermogravimetric Analysis (TGA) 26
Chapter 4 Results 30
4.1 Material Characterization 30
4.1.1 Crystal Structures 30
4.1.2 Quantitative Analysis of Composition 33
4.1.3 Particle Morphology 34
4.2 Sintering Behavior of Cathode Materials 35
4.3 Conduction Behavior of Cathode Materials 62
4.3.1 Total Conductivity 62
4.3.2 Valence State of Fe and O 65
4.3.3 Oxygen Stoichiometry 67
Chapter 5 Discussions 92
5.1 Limitation of Cobalt Content in (Bi,Sr)FeO3 92
5.2 Porous Cathode Materials 92
Chapter 6 Conclusions 96
Reference 98
Appendix 107


Reference
1.E. Ivers-Tiffe’e, A. Weber, D. Herbstritt, “Materials and technologies for SOFC components,” J. European Ceramic Society, 21 (2001) 1805–1811.
2.M. A. Penã, J. L. G. Fierro, “Chemical Structures and Performance of Perovskite Oxides,” Chem. Rev., 101 (2001) 1981-2017.
3.Q. Xu, D. Huang, W. Chen, F. Zhang, B. Wang, “Structure, electrical conducting and thermal expansion properties of Ln0.6Sr0.4Co0.2Fe0.8O3 (Ln = La, Pr, Nd, Sm) perovskite-type complex oxides,” Journal of Alloys and Compounds, 429 (2007) 34–39.
4.A. Petric, P. Huang, F. Tietz, “Evaluation of La–Sr–Co–Fe–O perovskites for solid oxide fuel cells and gas separation membranes,” Solid State Ionics, 135 (2000) 719–725.
5.V. A. Khomchenko, D. A. Kiselev, J. M. Vieira, Li Jian, A. L. Kholkin, A. M. L. Lopes, Y. G. Pogorelov, J. P. Araujo, and M. Maglione, “Effect of diamagnetic Ca, Sr, Pb, and Ba substitution on the crystal structure and multiferroic properties of the BiFeO3 perovskite,” Journal of Applied Physic, 103 (2008) 024-105.
6.V.A. Khomchenko, D.A. Kiselev, E.K. Selezneva, J.M. Vieira, A.M.L. Lopes, Y.G. Pogorelov, J.P. Araujo, A.L. Kholkin, “Weak ferromagnetism in diamagnetically-doped Bi1 − xAxFeO3 (A=Ca, Sr, Pb, Ba) multiferroics,” Materials Letters, 62 (2008) 1927–1929.
7.N. M. Sammes, G. A. Tompsett, H. NaÈ fe, F. Aldinger, “Bismuth Based Oxide Electrolytes-Structure and Ionic Conductivity,” Journal of the European Ceramic Society, 19 (1999) 1801-1826.
8.黃德榮, 氧化鉍基鈣鈦礦陰極材料用於中溫型燃料電池之研究 (2013).
9.C. Sun, R. Hui, J. Roller, “Cathode materials for solid oxide fuel cells: a review,” J. Solid State Electrochem, 14 (2010) 1125–1144.
10.J. Nielsen, J. Hjelm, “Impedance of SOFC electrodes: A review and a comprehensive casestudy on the impedance of LSM:YSZ cathodes,” Electrochimica Acta, 115 (2014) 31– 45.
11.A. Aguadero, L. Fawcett, S.Taub, R. Woolley, K. Wu, N. Xu, John A. Kilner, Stephen J. Skinner, “Materials development for intermediate-temperature solid oxide electrochemical devices,”J. Mater. Sci., 47 (2012)3925–3948.
12.A. Weber, Ellen Ivers-Tiffée, “Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications,” Journal of Power Sources, 127 (2004) 273–283
13.Stuart B. Adler, “Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes,”Chem. Rev., 104 (2004) 4791-4843.
14.J. Molenda, K. ´ Swierczek, W. Zaj˛ac, “Functional materials for the IT-SOFC, ”Journal of Power Sources, 173 (2007) 657–670.
15.John B. Goodenough, “Oxide-Ion Electrolytes,” Annu. Rev. Mater. Res., 33 (2003) 91–128.
16.S. P. Jiang, “Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review,” J. Mater. Sci., 43 (2008) 6799-6833.
17.NM Sammes and BR Roy, “Cathodes,” Colorado School of Mines, Golden, CO, USA.
18.Y. Teraoka, H.M. Zhang, K. Okamoto, and N. Yamazoe, “Mixed Ionic-Electronic Conductivity of Lal-xSrxCol-yFeyO3-δ Peroskite-type Oxides,” Mat. Res. Bull., 23 (1988) 51-58.
19.Jos´e M. Serra, Hans-Peter Buchkremer, “On the nanostructuring and catalytic promotion of intermediate temperature solid oxide fuel cell (IT-SOFC) cathodes,” J. of Power Sources, 172 (2007) 768–774.
20.B. Fan, X. Liu, “A-deficit LSCF for intermediate temperature solid oxide fuel cells,” Solid State Ionics, 180 (2009) 973–977.
21.K.S. Nalwa, A. Garg, A. Upadhyaya, “Effect of samarium doping on the properties of solid-state synthesized multiferroic bismuth ferrite,” Materials Letters, 62 (2008) 878–881.
22.C. Rossignol, J.M. Ralph, J.-M. Bae, J.T. Vaughey, “Ln1-xSrxCoO3 (Ln=Gd, Pr) as a cathode for intermediate-temperature solid oxide fuel cells,” Solid State Ionics, 175 (2004) 59–61.
23.D. Baek, A. Kamegawa, H. Takamura, “Mixed conductivity and electrode properties of Mn-doped Bi–Sr–Fe-based perovskite-type oxides,” Solid State Ionics, 253 (2013) 211–216.
24.M. Petitjean, G. Caboche, E. Siebert, L. Dessemond, L.-C. Dufour, “(La0.8Sr0.2)(Mn1-yFey)O3±δ oxides for ITSOFC cathode materials Electrical and ionic transport properties,” Journal of the European Ceramic Society, 25 (2005) 2651–2654.
25.A.A. Taskin, A.N. Lavrov, Yoichi Ando, “Fast Oxygen Diffusion in A-site Ordered Perovskites,” Progress in Solid State Chemistry, 35 (2007) 481-490.
26.J. M. Ralph, A. C. schoeler, M. Krumpelt, “Materials for lower temperature solid oxide fuel cells,” Journal Of Materials Science, 36 (2001) 1161–1172.
27.T. Ishihara, H. Matsuda, Y. Takita, “Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor,” J. Am. Chem. Soc., 116 (1994) 3801-3803.
28.Stephen J. Skinner, John A. Kilner, “Oxygen ion conductors,” Materialstoday, 6 (2003) 30–37.
29.M. W. Barsoum, “Fundamentals of ceramics,”© 2003 by Taylor & Francis Group, LLC.
30.J. Richter, P. Holtappels, T. Graule, T. Nakamura, L. J. Gauckler, “Materials design for perovskite SOFC cathodes,” Monatsh Chem, 140 (2009) 985–999.
31.H. L. Tuller, A. S. Nowick, “Small Polaron Electron on Transport in Reduced CeO2, Single Crystals,” Phys. Chem. Solids, 38 (1977) 859-867.
32.V.A. Khomchenko, V.V. Shvartsman, P. Borisov, W. Kleemann, D.A. Kiselev, I.K. Bdikin, J.M. Vieira, A.L. Kholkin, “Effect of Gd substitution on the crystal structure and multiferroic properties of BiFeO3,” Acta Materialia, 57 (2009) 5137–5145.
33.H. Taguchi, M. Sonoda, M. Nagao, “ Relationship between Angles for Mn–O–Mn and Electrical Properties of Orthorhombic Perovskite-Type (Ca1-xSrx)MnO3,” Journal of Solid State Chemistry, 137 (1998) 82-86.
34.Y. Yin, M. Xiong, N. Yang, Z. Tong, Y. Guo, Z. Ma, E. Sun, J. Yamanis, B. Jing, “Investigation on thermal, electrical, and electrochemical properties of scandium-doped Pr0.6Sr0.4(Co0.2Fe0.8)(1-x)ScxO3-δ as cathode for IT-SOFC,” international journal of hydrogen energy, 36 (2011) 3989-3996.
35.T. Atou, H. Chiba, K. Ohoyama, Y. Yamaguchi, Y. Syono, “Structure Determination of Ferromagnetic Perovskite BiMnO3,” Journal of Solid State Chemistry, 145 (1999) 639-642.
36.Jaka Sunarso, Shaomin Liu, Joao C. Diniz da Costa,“Structure effect on the oxygen permeation properties of barium bismuth iron oxide membranes,” Journal of Membrane Science, 351 (2010) 44–49.
37.D. Arun Kumar, S. Selvasekarapandian, H. Nithya, Jarkko Leiro, Yoshitake Masuda, Sun-Dong Kim, Sang-Kuk Woo, “Effect of calcium doping on LaCoO3 prepared by Pechini method,” Powder Technology, 235 (2013) 140–147.
38.P. Zeng, R. Ran, Z. Chen, H. Gu, Z. Shao, J.C. Diniz da Costa, S. Liu,“Significant effects of sintering temperature on the performance of La0.6Sr0.4Co0.2Fe0.8O3−δ oxygen selective membranes,” Journal of Membrane Science, 302 (2007) 171–179.
39.M. Liu, D. Wang, “Preparation of La1-zSrzCo1-yFey03-x thin films, membranes, and coatings on dense and porous substrates,” J. Mater. Res., 10 (1995) 3210-3221.
40.Brian L. Cushing, Vladimir L. Kolesnichenko, Charles J. O’Connor, “Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles,” Chem. Rev., 104 (2004) 3893-3946.
41.D. Hari Prasad, S.Y. Park, E.-O. Oh, H. Ji, H.-R. Kim, K.-J. Yoon, J.-W. Son, J.-H. Lee, “Synthesis of nano-crystalline La1–xSrxCoO3–δ perovskite oxides by EDTA–citrate complexing process and its catalytic activity for soot oxidation,” Applied Catalysis A: General, 447– 448 (2012) 100– 106.
42.Y. Sakaki, Y. Takeda, A. Kato, N. Imanishi, O. Yamamoto, M. Hattori, M. Iio, Y. Esaki, “Ln1-xSrxMnO3 (Ln=Pr, Nd, Sm and Gd) as the cathode material for solid oxide fuel cells,”Solid State Ionics, 118 (1999) 187–194.
43.K. T. Lee, A. Manthiram, “Comparison of Ln0.6Sr0.4CoO3−δ (Ln = La, Pr, Nd, Sm, and Gd) as Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells,” Journal of The Electrochemical Society, 153 (2006) A794-A798.
44.K. Kammer, “Studies of Fe–Co based perovskite cathodes with different A-site cations,” Solid State Ionics, 177 (2006) 1047–1051.
45.B. Liu, Z. Jian, B. Ding, F. Chen, C. Xia, “Bi0.5Sr0.5MnO3 as cathode material for intermediate-temperature solid oxide fuel cells,” Journal of Power Sources, 196 (2011) 999-1005.
46.K. Song, K. Lee, “Characterization of Ba0.5Sr0.5M1-xFexO3-δ (M = Co and Cu) perovskite oxide cathode materials for intermediate temperature solid oxide fuel cells,” Ceramics International, 38 (2012) 5123–5131.
47.H. Patra, S.K. Rout, S.K. Pratihar, S. Bhattacharya, “Effect of process parameters on combined EDTA–citrate synthesis of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite,” Powder Technology, 209 (2011) 98–104.
48.林廷諭, 中溫固態氧化物燃料電池鑭鍶鈷鐵基複合陰極層之分析及電性研究, 台灣大學碩士論文 (2012).
49.陳牧民‚ 使用生質燃料的固態燃料電池組之開發及測試, 台灣大學碩士論文 (2014).
50.Y. H. Wang, X. Qi, “The Effects of Nickel Substitution on Bismuth Ferrite,” Procedia Engineering, 36 (2012) 455–461.
51.統計學, 楊維寧,新陸書局股份有限公司
52.R.L. Coble, J. Appl. Phys., 32 (1961) 787-792; R. L. Coble, J. Appl. Phys., 36 (1965) 2327.
53.R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides,”Acta Cryst., A32 (1976) 751.
54.P. C. Sati, M. Arora, S. Chauhan, S. Chhoker, Manoj Kumar,“ Structural, magnetic, and optical properties of Pr and Zr codoped BiFeO3 multiferroic ceramics, ” Journal of Applied Physics, 112 (2012) 094102.
55.K. Brinkman, T. Iijima, H. Takamura, “Acceptor Doped BiFeO3 Ceramics: A New Material for Oxygen Permeation Membranes” Japanese Journal of Applied Physics, 46 (2007) L93-L96.
56.T. Atou, H. Chiba, K. Ohoyama, Y. Yamaguchi, Y. Syono,“ Structure Determination of Ferromagnetic Perovskite BiMnO3,” Journal of Solid State Chemistry, 145 (1999)639-642.
57.Y. Guo, Y. Yin, Z. Tong, J. Yin, M. Xiong, Z. Ma, “Impact of synthesis technique on the structure and electrochemical characteristics of Pr0.6Sr0.4Co0.2Fe0.8O3−δ (PSCF) cathode material,” Solid State Ionics, 193 (2011) 18–22.
58.C. Ostos, O. Raymond, N. Suarez-Almodovar, D. Bueno-Baque´s, L. Mestres, J. M. Siqueiros, “Highly textured Sr, Nb co-doped BiFeO3 thin films grown on SrRuO3/Si substrates by rf- sputtering,” J. Appl. Phys., 110 (2011) 024114.
59.J. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, “Systematic XPS studies of metal oxides, hydroxides and peroxides,” Phys. Chem. Chem. Phys., 2 (2000) 1319-1324.
60.A. Mineshige, M. Kobune, S. Fujii, Z. Ogumi, M. Inaba, T. Yao, K. Kikuchi, Takeshi Yao,à and Kenji Kikuchi,“Metal-Insulator Transition and Crystal Structure of La1-xSrxCoO3 as Functions of Sr-Content, Temperature, and Oxygen Partial Pressure,” Journal of Solid State Chemistry, 142 (1999) 374-381.
61.S. Uhlenbruck, F. Tietz, “High-temperature thermal expansion and conductivity of cobaltites: potentials for adaptation of the thermal expansion to the demands for solid oxide fuel cells,” Materials Science and Engineering, B107 (2004) 277–282.
62.http://xpssimplified.com/elements/iron.php
63.Peter C. J. Graat, Maecel A.J. Somers, “Simutaneous determination of composition and thickness of thin iron-oxide films from XPS Fe 2p spectra,”Applied Surface Science, 100/101 (1996) 36-40.
64.M. Natile, F. Poletto, A. Galenda, A. Glisenti, T. Montini, L. De Rogatis, P. Fornasiero, “La0.6Sr0.4Co1-yFeyO3-δ Perovskites: Influence of the Co/Fe Atomic Ratio on Properties and Catalytic Activity toward Alcohol Steam-Reforming,” Chem. Mater., 20 (2008) 2314–2327.
65.M. Gharagozlou, R. Bayati, Photocatalytic Activity and Formation of Oxygen Vacancies in Cation Doped Anatase TiO2 Nanoparticles, Ceramics International, 40 (2014) 10247-10253.
66.J.L.G. Fierro, “Structure and Composition of Perovskite Surface in Relation to adsorption and Catalytic Properties,”Catalysis Today, 8 (1990) 153-174.
67.J. H. Kim, S. W. Baek, C. Lee, K. Park, J. Bae, “Performance analysis of cobalt-based cathode materials for solid oxide fuel cell,” Solid State Ionics, 179 (2008) 1490–1496.
68.Y. L. Kuo, C. Lee, Y. S. Chen, H. Liang, “Gadolinia-doped ceria films deposited by RF reactive magnetron sputtering,” Solid State Ionics, 180 (2009) 1421–1428.
69.Y. L. Kuo, Y. S. Chen, C. Lee, “Growth of 20 mol% Gd-doped ceria thin films by RF reactive sputtering: The O2/Ar flow ratio effect,” Journal of the European Ceramic Society, 31 (2011) 3127–3135.
70.R. Amin, K. Karan, “Characterization of La0.5Ba0.5CoO3-δ as a SOFC Cathode Material,” Journal of The Electrochemical Society, 157 (2) (2010) B285-B291.
71.Z. Chen, R. Ran, W. Zhou, Z. Shao, S. Liu, “Assessment of Ba0.5Sr0.5Co1−yFeyO3−δ (y = 0.0–1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane,”Electrochimica Acta, 52 (2007) 7343–7351.
72.SDT Q600 (SDT Q600, TA Waters LLC, USA) Brochure (http://www.tainstruments.com/product.aspx?siteid=11&id=22&n=1)
73.P. Godara, A. Agarwal, N. Ahlawat, S. Sanghi, R. Dahiya, “ Crystal structure transformation, dielectric and magnetic properties of Ba and Co modified BiFeO3 multiferroic,” Journal of Alloys and Compounds, 594 (2014) 175–181
74.D. Varshney, A. Kumar, K. Verma, “Effect of A site and B site doping on structural, thermal, and dielectric properties of BiFeO3 ceramics,” Journal of Alloys and Compounds, 509 (2011) 8421– 8426
75.R. Fernández-González, T. Molina, S. Savvin, R. Moreno, A. Makradi,“Characterization and fabrication of LSCF tapes,”Journal of European Ceramics Society, 34 (2014) 953-959.
76.C. Zener, “Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Comyountls of Manganese with Perovskite Structure,”Physical Review, 82 (1951) 403-405.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top