跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/26 04:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳家昇
研究生(外文):Chia-Shen Chen
論文名稱:LZ91與AZ31鎂合金微弧氧化製程與耐腐蝕性質研究
論文名稱(外文):Studies on Micro-Arc Oxidation Processing and Corrosion Behavior of LZ91 and AZ31 Magnesium alloys
指導教授:林新智林新智引用關係
指導教授(外文):Hsin-Chi Lin
口試委員:林昆明楊木榮葉明堂
口試委員(外文):Kun-Ming LinMu-Rong Yang
口試日期:2015-07-06
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:155
中文關鍵詞:LZ91AZ31微弧氧化腐蝕電化學鹽霧試驗微觀結構
外文關鍵詞:LZ91AZ31Micro-arc oxidationCorrosionElectrochemistrySalt spray testMicrostructure
相關次數:
  • 被引用被引用:2
  • 點閱點閱:352
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鎂合金是最輕的工程金屬材料,其高比強度在汽車、航太和消費性電子商品產業都有很大的發展性,但因為鎂合金的耐腐蝕和耐磨耗性質差,而嚴重影響其商業用途。微弧氧化為鎂合金的電化學表面改質技術之一,其特色是以高電壓在鎂合金表面生成一氧化膜,可以大幅提升其耐腐蝕與耐磨耗特性。
本研究以LZ91和AZ31鎂合金作為材料,搭配矽酸鈉和磷酸鈉基礎之電解液,透過調整電解液成分、電流密度、佔空比、工作頻率和工作時間來達到提升耐腐蝕性質的目的。本研究利用極化曲線、交流阻抗和鹽霧試驗來評估膜層的耐腐蝕性質,並利用掃描式電子顯微鏡、X光光電子光譜儀和X光繞射儀分析膜層之微觀形貌、化學成分和結晶組成。
研究結果發現選擇適當的微弧氧化製程能提供鎂合金很好的保護性,其中,陰極電流密度和佔空比對耐腐蝕性質的影響較小,而工作頻率和工作時間的影響較大;在固定電流密度和佔空比的實驗中,工作頻率1000 Hz和工作時間8分鐘的微弧氧化膜層有較好的耐腐蝕性質,在96小時鹽霧試驗後,LZ-SAc 10% 1000 8和 AZ-SAc 10% 1000 8分別只有2和1個蝕點,且腐蝕面積分別為0.009%和0.061%。此外,透過腐蝕形貌觀察發現微弧氧化膜層在腐蝕反應中的剝離效應(Flaking effect),此效應有可能使有微弧氧化膜層的鎂合金之腐蝕反應速率增加。
另一方面,在實驗中發現LZ91的微弧氧化膜層會隨著大氣放置時間而有顏色上的變化,透過XRD、SEM和XPS發現在結晶度或是表面膜層的結構和成份上都沒有變異,但EIS結果指出極化阻抗會隨時間下降,故此顏色和腐蝕性質的變異應該是因為膜層內部成分或化學組態的變化而造成。


Magnesium is the lightest structural metal and its alloys are attractive to the automotive, aerospace and electronic industries for their high ratio of strength to weight. Unfortunately, magnesium alloys exhibit a very poor corrosion resistance and wear resistance. These weaknesses seriously influence the development and application of magnesium alloys. Micro-arc oxidation, which can generate oxide coatings on alloys’ surface, is a high voltage electrochemical surface treatment for magnesium alloys. This technique can remarkably promote the corrosion resistance and wear resistance of magnesium alloys.
In this study, LZ91 and AZ31 magnesium alloys are choosed to be anodized in silicate and phosphate based electrolytes. The effect of various process parameters, including electrolytic composition, current density, duty ratio, frequency, and working time, on MAO coatings was evaluated. Salt Fog Test, Potentiodynamic Polarization Test, and Electrochemical Impedence Spectroscopy (EIS) were conducted for corrosion analysis; Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), and X-ray Diffraction (XRD) were used to study the morphology, microstructure and composition of coatings.
Test results show that MAO treated magnesium samples with proper process parameter exhibit excellent corrosion resistance. The effect of cathodic current density and duty ratio is smaller than the one of frequency and working time. In all experiments, samples produced by 1000 Hz and 8 minutes were always rated better corrosion resistance. After 96 hours salt spray test, LZ-SAc 10% 1000 8 and AZ-SAc 10% 1000 8 had only 1 and 2 pits with total corrosion area 0.009% and 0.061%, respectively. Besides, by studying the microstructure of corroded smaples, flaking effect was observed. MAO treated samples may suffer from faster corrosion rate for this effect.
On the other hand, a color changing phenomenon was observed on MAO treated LZ91 samples. The test results of XRD, SEM and XPS indicate that the degree of crystallinity, morphology and surface composition of coatings remain no change; however, decaying corrosion resistance is showed by EIS data on 15 days idling sample. Therefore, the conversion of color and corrosion resistance may be contributed to the change of composition or chemical state in MAO coatings.


致謝 I
摘要 II
Abstract III
目錄 V
圖目錄 IX
表目錄 XVIII
第一章 前言 1
第二章 文獻回顧 3
2-1 鎂合金與其腐蝕性質 3
2-1-1 鎂合金的腐蝕特性 3
2-1-2 負偏差效應 (Negative Differece Effect) 7
2-1-3 LZ91鎂鋰合金 10
2-1-4 AZ31鎂合金 12
2-2 微弧氧化 14
2-2-1 微弧氧化原理 15
2-2-1-1 電漿放電反應 16
2-2-1-2 微弧氧化成長機制 21
2-2-1-3 微弧氧化膜層微觀結構和性質分析 25
2-2-2 製程參數之影響 29
2-2-2-1 合金成分 30
2-2-2-2 電解液成分 33
2-2-2-3 電源參數 35
2-2-3 鎂合金微弧氧化鍍層腐蝕特性 39
2-2-3-1 微弧氧化腐蝕機制 39
2-2-3-2 微弧氧化腐蝕微觀形貌 42
2-2-3-3 腐蝕電化學分析 45
第三章 實驗步驟 51
3-1 實驗流程 51
3-2 試片前處理 51
3-3 微弧氧化設備與製程 53
3-4 氧化層結構與成分分析 55
3-4-1 色度分析 (Colorimeter) 55
3-4-2 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM) 56
3-4-3 渦電流膜厚計 (Coating thickness gages) 57
3-4-4 X光光電子光譜儀 (X-ray photoelectron Spectroscopy, XPS) 57
3-4-5 X光繞射分析 (X-ray Diffraction, XRD) 58
3-5 氧化層腐蝕分析 59
3-5-1 開路電位分析(Open Circuit Potential, OCP) 59
3-5-2 交流阻抗分析 (Eletrochemical Impedance Spectroscopy, EIS) 60
3-5-3 極化曲線分析 (Potentiodynamic Polarization Test) 64
3-5-4 鹽霧試驗 (Salt Spray Test) 64
第四章 結果與討論 67
4-1 微弧氧化製程對耐腐蝕性質的影響 67
4-1-1 佔空比對腐蝕性質之影響 67
4-1-1-1 LZ-PA佔空比實驗 67
4-1-1-2 AZ-SA和AZ-S佔空比實驗 74
4-1-2 工作頻率對腐蝕性質之影響 79
4-1-2-1 巨觀性質與微觀結構 79
4-1-2-2 鹽霧試驗 96
4-1-2-3 腐蝕電化學分析 101
4-1-2-4 腐蝕形貌觀察 115
4-1-3 結果與討論 127
4-2 LZ91微弧氧化膜層變色問題 128
4-2-1 色度分析 129
4-2-2 微觀形貌分析 130
4-2-3 X光光電子光譜儀分析 133
4-2-4 X光繞射分析 136
4-2-5 交流阻抗分析 138
4-2-6 結果與討論 142
第五章 結論 143
第六章 未來工作 145
參考文獻 146
附錄-矽酸鋁鈉對微弧氧化的影響 153



1.Magnesium Metal:Global Industry Markets & Outlook; Roskill Information Services, Ltd: London, UK, 2013.
2.A. Atrens, G. L. Song, M. Liu, Z. Shi, F. Cao, M. S. Dargusch, Review of recent developments in the field of magnesium corrosion. Advanced Engineering Materials, 17 (2015) 400-453.
3.R. O. Hussein, D. O. Northwood, Production of Anti-Corrosion Coatings on Light Alloys (Al, Mg, Ti) by Plasma-Electrolytic Oxidation (PEO). (2014).
4.Wikipedia contributors Magnesium. http://en.wikipedia.org/w/index.php?title=Magnesium&oldid=659275911 (accessed 28 April 2015 11:20 UTC).
5.E. Ghali, Corrosion resistance of aluminum and magnesium alloys: understanding, performance, and testing. John Wiley & Sons, 2010.
6.M. Kurth, P. C. J. Graat, H. D. Carstanjen, E. J. Mittemeijer, The initial oxidation of magnesium: an in situ study with XPS, HERDA and ellipsometry. Surface and interface analysis, 38 (2006) 931-940.
7.G. L. Song, A. Atrens, Corrosion mechanisms of magnesium alloys. Advanced engineering materials, 1 (1999) 11-33.
8.G. L. Song, Corrosion of magnesium alloys. Elsevier, 2011.
9.G. L. Song, Corrosion prevention of magnesium alloys. Elsevier, 2013.
10.M. P. Brady, G. Rother, L. M. Anovitz, K. C. Littrell, K. A. Unocic, H. H. Elsentriecy, G. L. Song, J. K. Thomson, N. C. Gallego, B. Davis, Film Breakdown and Nano-Porous Mg(OH)2 Formation from Corrosion of Magnesium Alloys in Salt Solutions. Journal of The Electrochemical Society, 162 (2015) C140-C149.
11.M. Taheri, R. C. Phillips, J. R. Kish, G. A. Botton, Analysis of the surface film formed on Mg by exposure to water using a FIB cross-section and STEM–EDS. Corrosion Science, 59 (2012) 222-228.
12.M. Santamaria, F. D. Quarto, S. Zanna, P. Marcus, Initial surface film on magnesium metal: a characterization by X-ray photoelectron spectroscopy (XPS) and photocurrent spectroscopy (PCS). Electrochimica Acta, 53 (2007) 1314-1324.
13.S. J. Splinter, N. S. McIntyre, W. N. Lennard, K. Griffiths, G. Palumbo, An AES and XPS study of the initial oxidation of polycrystalline magnesium with water vapour at room temperature. Surface science, 292 (1993) 130-144.
14.K. A. Unocic, H. H. Elsentriecy, M. P. Brady, H. M. Meyer, G. L. Song, M. Fayek, R. A. Meisner, B. Davis, Transmission Electron Microscopy Study of Aqueous Film Formation and Evolution on Magnesium Alloys. Journal of The Electrochemical Society, 161 (2014) C302-C311.
15.J. H. Nordlien, S. Ono, N. Masuko, K. Nisancioglu, A TEM investigation of naturally formed oxide films on pure magnesium. Corrosion science, 39 (1997) 1397-1414.
16.M. Liu, S. Zanna, H. Ardelean, I. Frateur, P. Schmutz, G. L. Song, A. Atrens, P. Marcus, A first quantitative XPS study of the surface films formed, by exposure to water, on Mg and on the Mg–Al intermetallics: Al 3 Mg 2 and Mg 17 Al 12. Corrosion Science, 51 (2009) 1115-1127.
17.G. L. Song, A. Atrens, D. S. John, X. Wu, J. Nairn, The anodic dissolution of magnesium in chloride and sulphate solutions. Corrosion Science, 39 (1997) 1981-2004.
18.R. Tunold, H. Holtan, M. B. H. Berge, A. Lasson, R. Steen-Hansen, The corrosion of magnesium in aqueous solution containing chloride ions. Corrosion Science, 17 (1977) 353-365.
19.Z. ShI, J. X. Jia, A. Atrens, Galvanostatic anodic polarisation curves and galvanic corrosion of high purity Mg in 3.5% NaCl saturated with Mg (OH) 2. Corrosion Science, 60 (2012) 296-308.
20.G. L. Song, D. StJohn, The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ. Journal of Light Metals, 2 (2002) 1-16.
21.G. L. Song, A. Atrens, D. Stjohn, J. Nairn, Y. Li, The electrochemical corrosion of pure magnesium in 1 N NaCl. Corrosion Science, 39 (1997) 855-875.
22.Y. W. Song, D. Y. Shan, R. S. Chen, E. H. Han, Corrosion characterization of Mg–8Li alloy in NaCl solution. Corrosion Science, 51 (2009) 1087-1094.
23.Y. W. Song, D. Y. Shan, R. S. Chen, E. H. Han, Corrosion resistance of Mg-8⊙ 8Li alloy compared with AZ91. Corrosion Engineering, Science and Technology, 46 (2011) 719-723.
24.Y. W. Song, D. Y. Shan, R. S. Chen, E. H. Han, Investigation of surface oxide film on magnesium lithium alloy. Journal of Alloys and Compounds, 484 (2009) 585-590.
25.C. Ma, Y. Lu, P. Sun, Y. Yuan, X. Jing, M. Zhang, Characterization of plasma electrolytic oxidation coatings formed on Mg–Li alloy in an alkaline polyphosphate electrolyte. Surface and Coatings Technology, 206 (2011) 287-294.
26.Z. Li, Y. Yuan, P. Sun, X. Jing, Ceramic coatings of LA141 alloy formed by plasma electrolytic oxidation for corrosion protection. ACS applied materials & interfaces, 3 (2011) 3682-3690.
27.P. Sun, Y. Lu, Y. Yuan, X. Jing, M. Zhang, Preparation and characterization of duplex PEO/MoC coatings on Mg–Li alloy. Surface and Coatings Technology, 205 (2011) 4500-4506.
28.J. Liu, Y. Lu, X. Jing, Y. Yuan, M. Zhang, Characterization of plasma electrolytic oxidation coatings formed on Mg–Li alloy in an alkaline silicate electrolyte containing silica sol. Materials and corrosion, 60 (2009) 865-870.
29.R. Grimes, Superplastic forming of magnesium alloys. Superplastic Forming of Advanced Metallic Materials: Methods and Applications, 13 (2011) 303.
30.M. C. Zhao, P. Schmutz, S. Brunner, M. Liu, G. L. Song, A. Atrens, An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing. Corrosion Science, 51 (2009) 1277-1292.
31.A. Pardo, M. C. Merino, A. E. Coy, R. Arrabal, F. Viejo, E. Matykina, Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl. Corrosion Science, 50 (2008) 823-834.
32.A. Pardo, M. C. Merino, A. E. Coy, F. Viejo, R. Arrabal, S. Feliu, Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media. Electrochimica Acta, 53 (2008) 7890-7902.
33.G. L. Song, A. Atrens, X. Wu, B. Zhang, Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride. Corrosion Science, 40 (1998) 1769-1791.
34.S. Feliu, A. Pardo, M. C. Merino, A. E. Coy, F. Viejo, R. Arrabal, Correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys. Applied Surface Science, 255 (2009) 4102-4108.
35.L. Wang, T. Shinohara, B. P. Zhang, XPS study of the surface chemistry on AZ31 and AZ91 magnesium alloys in dilute NaCl solution. Applied Surface Science, 256 (2010) 5807-5812.
36.G. L. Song, A. Atrens, M. Dargusch, Influence of microstructure on the corrosion of diecast AZ91D. Corrosion science, 41 (1998) 249-273.
37.C. J. Liang. In-situ impedance spectroscopy studies of the plasma electrolytic oxidation coating process. The Univerisity of Sheffield, UK, 2013.
38.A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S. J. Dowey, Plasma electrolysis for surface engineering. Surface and Coatings Technology, 122 (1999) 73-93.
39.R. O. Hussein, X. Nie, D. O. Northwood, A. L. Yerokhin, A. Matthews, Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process. Journal of Physics D: Applied Physics, 43 (2010) 105203.
40.A. Yerokhin, L. Snizhko, N. Gurevina, A. Leyland, A. Pilkington, A. Matthews, Discharge characterization in plasma electrolytic oxidation of aluminium. Journal of Physics D: Applied Physics, 36 (2003) 2110.
41.J. Jovović, S. Stojadinović, N. M. Šišović, N. Konjević, Spectroscopic study of plasma during electrolytic oxidation of magnesium-and aluminium-alloy. Journal of Quantitative Spectroscopy and Radiative Transfer, 113 (2012) 1928-1937.
42.P. Gupta, G. Tenhundfeld, E. O. Daigle, D. Ryabkov, Electrolytic plasma technology: Science and engineering—An overview. Surface and Coatings Technology, 201 (2007) 8746-8760.
43.R. O. Hussein, X. Nie, D. O. Northwood, An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing. Electrochimica Acta, 112 (2013) 111-119.
44.O. Snizhko, A. L. Yerokhin, A. Pilkington, N. L. Gurevina, D. O. Misnyankin, A. Leyland, A. Matthews, Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions. Electrochimica Acta, 49 (2004) 2085-2095.
45.A. L. Yerokhin, A. Leyland, A. Matthews, Kinetic aspects of aluminium titanate layer formation on titanium alloys by plasma electrolytic oxidation. Applied Surface Science, 200 (2002) 172-184.
46.P. B. Srinivasan, J. Liang, R. G. Balajeee, C. Blawert, M. Störmer, W. Dietzel, Effect of pulse frequency on the microstructure, phase composition and corrosion performance of a phosphate-based plasma electrolytic oxidation coated AM50 magnesium alloy. Applied Surface Science, 256 (2010) 3928-3935.
47.R. H. U. Khan, A. L. Yerokhin, A. Matthews, Structural characteristics and residual stresses in oxide films produced on Ti by pulsed unipolar plasma electrolytic oxidation. Philosophical Magazine, 88 (2008) 795-807.
48.F. Muhaffel, F. Mert, H. Cimenoglu, D. Höche, M. Zheludkevich, C. Blawert, Characterisation and Corrosion Behaviour of Plasma Electrolytic Oxidation Coatings on High Pressure Die Cast Mg-5Al-0.4 Mn-xCe (x= 0, 0.5, 1) alloys. Surface and Coatings Technology, 269 (2014) 200-211.
49.A. Ghasemi, V. S. Raja, C. Blawert, W. Dietzel, K. U. Kainer, The role of anions in the formation and corrosion resistance of the plasma electrolytic oxidation coatings. Surface and Coatings Technology, 204 (2010) 1469-1478.
50.R. Arrabal, E. Matykina, T. Hashimoto, P. Skeldon, G. E. Thompson, Characterization of AC PEO coatings on magnesium alloys. Surface and Coatings Technology, 203 (2009) 2207-2220.
51.X. Nie, E. I. Meletis, J. C. Jiang, A. Leyland, A. L. Yerokhin, A. Matthews, Abrasive wear/corrosion properties and TEM analysis of Al 2 O 3 coatings fabricated using plasma electrolysis. Surface and Coatings Technology, 149 (2002) 245-251.
52.R. H. U. Khan, A. L. Yerokhin, X. Li, H. Dong, A. Matthews, Surface characterisation of DC plasma electrolytic oxidation treated 6082 aluminium alloy: Effect of current density and electrolyte concentration. Surface and Coatings Technology, 205 (2010) 1679-1688.
53.R. O. Hussein, D. O. Northwood, X. Nie, The effect of processing parameters and substrate composition on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloys. Surface and Coatings Technology, 237 (2013) 357-368.
54.Y. L. Cheng, X. G. Xue, Q. Wang, Q. Wu, E. Matykina, P. Skeldon, G. E. Thompson, New findings on properties of plasma electrolytic oxidation coatings from study of an Al–Cu–Li alloy. Electrochimica Acta, 107 (2013) 358-378.
55.R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, G. E. Thompson, Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings. Corrosion Science, 50 (2008) 1744-1752.
56.T. S. T. S. N. S. Narayanan, I. S. Park, M. H. Lee, Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges. Progress in Materials Science, 60 (2014) 1-71.
57.W. Mu, Y. Han, Characterization and properties of the MgF 2/ZrO 2 composite coatings on magnesium prepared by micro-arc oxidation. Surface and Coatings Technology, 202 (2008) 4278-4284.
58.R. F. Zhang, S. F. Zhang, Y. L. Shen, L. H. Zhang, T. Z. Liu, Y. Q. Zhang, S. B. Guo, Influence of sodium borate concentration on properties of anodic coatings obtained by micro arc oxidation on magnesium alloys. Applied Surface Science, 258 (2012) 6602-6610.
59.A. L. Yerokhin, A. Shatrov, V. Samsonov, P. Shashkov, A. Pilkington, A. Leyland, A. Matthews, Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process. Surface and Coatings Technology, 199 (2005) 150-157.
60.J. H. Wang, M. H. Du, F. Z. Han, J. Yang, Effects of the ratio of anodic and cathodic currents on the characteristics of micro-arc oxidation ceramic coatings on Al alloys. Applied Surface Science, 292 (2014) 658-664.
61.A. L. Yerokhin, L. O. Snizhko, N. L. Gurevina, A. Leyland, A. Pilkington, A. Matthews, Discharge characterization in plasma electrolytic oxidation of aluminium. Journal of Physics D: Applied Physics, 36 (2003) 2110-2120.
62.P. B. Srinivasan, J. Liang, C. Blawert, M. Störmer, W. Dietzel, Effect of current density on the microstructure and corrosion behaviour of plasma electrolytic oxidation treated AM50 magnesium alloy. Applied Surface Science, 255 (2009) 4212-4218.
63.Y. Tang, X. Zhao, K. Jiang, J. Chen, Y. Zuo, The influences of duty cycle on the bonding strength of AZ31B magnesium alloy by microarc oxidation treatment. Surface and Coatings Technology, 205 (2010) 1789-1792.
64.V. Dehnavi, B. L. Luan, D. W. Shoesmith, X. Y. Liu, S. Rohani, Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior. Surface and Coatings Technology, 226 (2013) 100-107.
65.Y. Gao, A. L. Yerokhin, E. Parfenov, A. Matthews, Application of Voltage Pulse Transient Analysis during Plasma Electrolytic Oxidation for Assessment of Characteristics and Corrosion Behaviour of Ca-and P-containing Coatings on Magnesium. Electrochimica Acta, 149 (2014) 218-230.
66.J. Liang, P. B. Srinivasan, C. Blawert, M. Störmer, W. Dietzel, Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes. Electrochimica Acta, 54 (2009) 3842-3850.
67.G. L. Song, Z. Shi, Corrosion mechanism and evaluation of anodized magnesium alloys. Corrosion Science, 85 (2014) 126-140.
68.J. Liang, P. B. Srinivasan, C. Blawert, W. Dietzel, Influence of chloride ion concentration on the electrochemical corrosion behaviour of plasma electrolytic oxidation coated AM50 magnesium alloy. Electrochimica Acta, 55 (2010) 6802-6811.
69.A. D. King, N. Birbilis, J. R. Scully, Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass-loss and hydrogen collection study. Electrochimica Acta, 121 (2014) 394-406.
70.G. W. C. Wiegand Color glossary. http://www.sapdesignguild.org/goodies/glossary_color/index1.html.
71.儀測科技國際股份有限公司. http://www.ebond.com.tw/newsdetail.php?id=1169.
72.CNS經濟部鹽霧試驗規範. 2002.
73.B. Kazanski, A. Kossenko, M. Zinigrad, A. Lugovskoy, Fluoride ions as modifiers of the oxide layer produced by plasma electrolytic oxidation on AZ91D magnesium alloy. Applied Surface Science, 287 (2013) 461-466.
74.陳欽聖. Bipolar pulsed micro-arc oxidation on a LZ91 Mg-Li alloy. Tatung University, ROC, 2009.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top