跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 15:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張景堯
研究生(外文):Jing-Yao Chang
論文名稱:固液擴散接合在3D IC封裝製程之應用及其可靠度驗證
論文名稱(外文):The Application and Reliability of Solid-Liquid Interdiffusion Bonding Technology in 3D IC Packages
指導教授:莊東漢莊東漢引用關係
口試委員:林招松薛富盛王彰盟鄭明達張道智
口試日期:2015-06-02
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:92
中文關鍵詞:介金屬微凸塊可靠度底膠玻璃轉化溫度熱膨脹係數錫空乏區固液擴散接合覆晶封裝無芯載板失效模式
外文關鍵詞:Intermetallicmicrobumpreliabilityunderfillglass transition temperaturecoefficient of thermal expansionSn depletion zonesolid-liquid interdiffusionFlip chip packagecoreless substratefailure mode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著電子產品輕薄短小的趨勢潮流,對於產品可靠度的要求越來越嚴苛,尤其是目前炙手可熱的3D IC、高功率模組及無芯覆晶封裝,更突顯出高功率及高密度封裝的苛刻要求。對於這類型的構裝技術,高可靠度與壽命就顯得相當重要。本研究以兩個章分別探討3D IC微凸塊C2C封裝技術與可靠度及無芯覆晶載板board-level封裝技術與可靠度,在這兩個技術中,underfill扮演著極重要的材料角色,能降低矽晶片與基板的熱膨脹係數的不匹配。由於underfill特性深深影響著覆晶封裝的可靠度特徵,挑選出適合的underfill將是影響產品壽命的其中一個關鍵因子。
本研究對於3D IC微接點構裝技術,首先評估兩款underfill對可靠度特性的影響,以Cu/Ni/Sn2.5Ag微凸塊製作的微接點為實驗載具,透過數值分析模擬等效彈性應變,歸納出undrfill特性與可靠度的關聯性。接著,將實際組裝的樣品進行溫度循環測試,得到失效樣品數量,從而計算出樣品的壽命。根據數值分析與溫度循環測試的結果,選出適合用於3D IC封裝的underfill材料的特性。完成underfill評估作業後,再使用Cu/Ni/Sn2.5Ag及Cu/Sn兩種微凸塊作為實驗載具,將兩種載具分別以熱壓接合(TCB)與傳統迴銲製程完成接合。實驗規劃是以兩種微凸塊結構搭配兩種組裝方式製作出4種實驗載具,使用適合的underfill進行間隙填充。完成的4種實驗載具以溫度循環測試可靠度,統計載具在不同循環次數的失效數量,從而算出載具的壽命。挑選出失效載具進行微結構分析,解釋失效原因與模式。
完成3D IC微接點結構與可靠度驗證,接著評估3D IC封裝載具的載板級(board-level)封裝,本研究使用ANSYS軟體來研究封裝級(package-level)和載板級(board-level)的無芯覆晶封裝(coreless flip chip package, CFCP)在溫度循環過程產生的應力/應變行為。再以實際的無芯載板覆晶封裝為載具,探討board-level封裝技術與可靠度。載具製作是將17 mm *17 mm的矽晶片組裝到6層PI無芯載板,銲接凸塊材料為Sn37Pb,組裝製程採用氮氣迴銲製程。迴銲完成凸塊接合後,使用氨基underfill進行隙縫填膠,underfill固化條件為150℃烘烤1小時。接著將SAC305錫球植到載板底部的銲墊,再將此載板組裝到印刷電路板,即完成無芯載板覆晶封裝。最後,將無芯覆晶封裝載具進行溫度循環,統計載具在不同循環次數的失效數量,從而算出載具的壽命。挑選出失效載具進行微結構分析,解釋失效原因與模式。

Due to electronic products trend towards light, thin, short, and small, the reliability requirement is more and more higher especially for high power and high density package such as 3D IC, high power module and coreless flip chip package. As the package technology mentioned above, high reliability and characteristic life of metal joint are extremely important. In this paper, we will focus on energy to discuss the rilability of 3D IC package and the board-level reliability of the coreless flip chip package. However, underfill plays as the most important material to enhance the reliability of flip chip package, by reducing the mismatch of coefficient of thermal expansion (CTE) between silicon chip and substrate. To select a compatible underfill material is important because the reliability characteristics of flip chip package were significantly affected by different material properties. Regarding the micro joint technology of 3D IC in this paper, two kinds of underfill were option to evaluate the reliability characteristics of 3D IC flip chip package. A 3D finite element analysis model was established by ANSYS 12.0 software to study the stress / strain contours of the microjoints sealed by various underfill materials under temperature cycling. Moreover, temperature cycling test (TCT) was chosen to evaluate the reliability of the assemblies which were survived after the preconditioning test, and the relationship between the failure rate and the number of cycles. According to the results of simulation and experiments, we choose the compatible underfill material for the following experiments. Two kinds of different microbump structures were used as the test vehicle. The microbumps were with a pitch size of 20

口試委員審定書 I
致謝 II
摘要 IV
Abstract VI
目錄 VIII
圖目錄 XII
表目錄 XV
第一章 3D IC封裝緒論 1
第二章 文獻回顧 6
2.1. 3D IC封裝製程文獻探討 6
2.2. 固液擴散接合技術文獻探討 11
Cu-Sn SLID接合 12
Ni-Sn SLID接合 16
Ag-Sn SLID接合 19
Au-Sn SLID接合 19
2.3. 無芯載板封裝之文獻探討 20
第三章 實驗載具規格 23
3.1. 3D IC載具規格 23
3.1.1. 3D IC晶片規格 23
3.1.2. Underfill規格 24
3.1.3. 組裝設備 25
3.2. 無芯載板覆晶封裝規格 26
3.2.1. 無芯載板與晶片規格 26
3.2.2. Underfill 規格 28
第四章 實驗載具製作與製程規劃 29
4.1. 3D IC實驗載具製作與製程規劃 29
4.1.1. 微凸塊製作流程 29
4.1.2. Cu-Sn凸塊組裝製程(載具#1) 31
4.1.3. Ni-Sn凸塊組裝製程(載具#2) 33
4.1.4. 可靠度驗證與金相製備 34
4.2. 無芯覆晶封裝之組裝製程 35
第五章 應力/應變行為之模擬與Underfill材料選用 36
5.1. 3D IC結構模擬與實驗驗證 36
5.1.1. ANNSYS建模 36
5.1.2. ANASYS模擬結果 39
5.1.3. 微接點實驗驗證與壽命預測 41
5.2. 無芯覆晶封裝結構模擬與實驗驗證Underfill材料選用 48
5.2.1. 無芯覆晶封裝模型建模 48
5.2.2. 無芯覆晶封裝模擬結果 50
第六章 實驗結果與討論 53
6.1. 3D IC微接點結構解析 53
6.1.1. 銅/錫微凸塊的形貌(載具#1) 53
6.1.2. 鎳/錫微凸塊的形貌(載具#2) 54
6.1.3. 微凸塊接合材料與製程組合所形成的微接點結構探討 55
6.1.3.1. 鎳/錫微凸塊與迴銲製程所形成的微接點結構分析 55
6.1.3.2. 鎳/錫微凸塊與熱壓製程所形成的微接點結構分析 58
6.1.3.3. 銅/錫微凸塊與迴銲製程所形成的微接點結構分析 60
6.1.3.4. 銅/錫微凸塊與熱壓製程所形成的微接點結構分析 62
6.1.4. 可靠度與失效機制 62
6.1.4.1. 鎳/錫微凸塊經迴銲製程形成的微接點結構可靠度與失效機制 62
6.1.4.2. 鎳/錫微凸塊經熱壓製程形成的微接點結構可靠度與失效機制 66
6.1.4.3. 銅/錫微凸塊經迴銲製程形成的微接點結構可靠度與失效機制 69
6.1.4.4. 銅/錫微凸塊經熱壓製程形成的微接點結構可靠度與失效機制 70
6.2. 無芯覆晶封裝結構解析 73
6.2.1. 接點微結構探討 73
6.2.2. 可靠度與失效機制 74
第七章 總結 77
第八章 參考文獻 80


[1]T. Fukushima, H. Kikuchi, Y. Yamada, T. Konno, J. Liang, K. Sasaki, K. Inamura, T. Tanaka and M. Koyanagi, “New 3-D integration technology based on reconfigured wafer-on-wafer bonding technique,” in Proc. IEEE Int. Electron Devices Meet., Dec. 2007, pp. 985–988.
[2]K. Sakuma, P. S. Andry, C. K. Tsang, K. Sueoka, Y. Oyama, C. Patel, B. Dang, S. L. Wright, B. C. Webb, E. Sprogis, R. Polastre, R. Horton and J. U. Knickerbocker, “Characterization of stacked die using die-to-wafer integration for high yield and throughput,” in Proc. Electron. Compon. Technol. Conf., Lake Buena Vista, FL, May 2008, pp. 18–23.
[3]Y. Kurita, S. Matsui, N. Takahashi, K. Soejima, M. Komuro, M. Itou, C. Kakegawa, M. Kawano, Y. Egawa, Y. Saeki, H. Kikuchi, O. Kato, A. Yanagisawa, T. Mitsuhashi, M. Ishino, K. Shibata, S. Uchiyama, J. Yamada and H. Ikeda, “A 3D stacked memory integrated on a logic device using SMAFTI technology,” in Proc. Electron. Compon. Technol. Conf., Reno, NV, 2007, pp. 821–829.
[4]J. Hwang, K. Jongyeon, K. Woonseong, K. Unbyoung, C. Taeje, and K. Sayoon, “Fine pitch chip interconnection technology for 3D integration,” in Proc. Electron. Compon. Technol. Conf., Las Vegas, NV, Jun. 2010, pp. 1399–1403.
[5]莊東漢 (1999) “擴散軟銲技術在電子封裝之應用”, 電子月刊,5 (11),118-125。
[6]C. C. Chuang, T. F. Yang, J. Y. Juang, Y. P. Hung, C. J. Zhan, Y. M. Lin, C. T. Lin, P. C. Chang and T. C. Chang, “Influence of underfill materials on the reliability of coreless flip chip package,” Microelectronics Reliability, 48 (2008) 1875-1881.
[7]M. Colella, “Void Free Processing Of Flip Chip On Board Assemblies Using No-Flow Underfills,” 9th Int’l Symposium on Advanced Packaging Materials, pp. 272-281.
[8]Z. Zhang and C. P. Wong, “Double-Layer No-Flow Underfill Materials and Process,” IEEE Transactions on advanced packaging, vol. 26, No. 2, May 2003.
[9]M. Colella and D. Baldwin, “Near Void Free Hybrid No-Flow Underfill Flip Chip Process Technology,” 2003 Electronic Components and Technology Conference, pp. 780-788.
[10]S. Suh, D. F. Baldwin, “Advanced Assembly Process Development For Ultra Fine Pitch Wafer Level Packaging”, 2006 Electronic Components and Technology Conference, pp. 1038-1044.
[11]P. Myo, S. C. Chong, L. Xie, S. W. Ho, W. H. S. Toh and T. C. Chai, “3D stacking by hybrid bonding with low temperature solder,” 2010 Electronic Components and Technology Conference, pp.246-250.
[12]C. Kim and D. F. Baldwin, “Characterization of the Floating Phenomena for Flip Chip Processing with No Flow Underfills,” 2005 Electronic Components and Technology Conference, pp. 201-211.
[13]S. Kawamoto, O. Suzuki, Y. Abe, H. Yoshii, T. Fujiki and F. Tanaka, “Fundamental Research of No-Flow UF for Low Stress Flip-Chip Package,” High Density Microsystem Design and Packaging and Component Failure Analysis, June 2005, pp. 1-5.
[14]S. Lee and D. F. Baldwin, “Assembly Yields Characterization of High IO Density, Fine Pitch Flip Chip in Package Using No-Flow Underfill,” 2007 Electronic Components and Technology Conference, pp. 35-41.
[15]R. Pendse, Y. N. Choi, K. M. Kim, G. Narvaez, B. Jafari and I. Singh, “Development of No Flow Underfill Technology for Next Generation Flip Chip Products,” 2005 Electronic Components and Technology Conference, pp. 291-296.
[16]S. Lee, M. J. Yim, R. N. Master, C. P. Wong and D. F. Baldwin, “Near Void-Free Assembly Development of Flip Chip Using No-Flow Underfill,” IEEE Transactions on advanced packaging, vol. 32, No. 2, April 2009.
[17]C. Feger, N. LaBianca, M. Gaynes, S. Steen, Z. Liu, R. Peddi and M. Francis, “The Over-Bump Applied Resin Wafer-Level Underfill Process: Process, Material and Reliability,” 2009 Electronic Components and Technology Conference, pp 1502-1505.
[18]K. Honda, T. Enomoto, A. Nagai and N. Takano, “NCF for Wafer Lamination Process in Higher Density Electronic Packages,” 2010 Electronic Components and Technology Conference, pp1853-1860.
[19]J. W. Nah, M. A. Gaynes, and C. Feger, “Development of Wafer Level Underfill Materials and Assembly Processes for Fine Pitch Pb-free Solder Flip Chip Packaging,” 2011 Electronic Components and Technology Conference, pp 1015-1022.
[20]S. Katsurayama and H. Suzuki, “High Performance Wafer Level Underfill Material with High Filler Loading,” 2011 Electronic Components and 35 Technology Conference, pp370-374.
[21]J. Y. Chang, S. Y. Huang, R. S. Cheng, F. J. Leu, C. J. Zhan and T. C. Chang “High Throughput Chip on Wafer Assembly Technology and Metallurgical Reactions of Pb-free micro-joints within a 3DIC Package,” Proceedings of International Conference of Electronic Packaging, Japan, pp. 159-164 (2010).
[22]S. Bader, W. Gust and Heiber, Acta Metall. Mater., Vol. 43, No. 1, 1995, p.329.
[23]A. Munding, A. Kaiser, P. Benkart, E. Kohn, A. Heittmann, H. Hübner and U. Ramacher, “Scaling aspects of microjoints for 3D chip interconnects,” Solid-State Device Research Conference, 2006. pp. 262 - 265.
[24]P. Ramm, M. J. Wolf, A. Klumpp, R. Wieland, B. Wunderle, B. Michel and H. Reichl, “Through silicon via technology - processes and reliability for wafer-level 3D system integration,” Electronic Components and Technology Conference, 2008. pp. 841 - 846.
[25]R. Agarwal, W. Zhang, P. Limaye, R. Labie, B. Dimcic, A. Phommahaxay, and P. Soussan, “Cu/Sn Microbumps Interconnect for 3D TSV Chip Stacking,” ECTC 2010, pp. 858 - 863.
[26]R. Agarwal, W. Zhang, P. Limaye and W. Ruythooren, “High Density Cu-Sn TLP Bonding for 3D Integration,” ECTC 2009, pp. 345 - 349.
[27]H. A. Mustain, W. D. Brown and S. S. Ang, “Transient Liquid Phase Die Attach for High-Temperature Silicon Carbide Power Devices,” Components and Packaging Technologies 2010, pp. 563 - 570.
[28]L. Menager, M. Soueidan, B. Allard, V. Bley and B. Schlegel, “A Lab-Scale Alternative Interconnection Solution of Semiconductor Dice Compatible with Power Modules 3-D Integration,” Power Electronics, IEEE Transactions on (Volume: 25 , Issue: 7 ), July 2010, pp. 1667 - 1670.
[29]K. Guth, D. Siepe, J. Görlich, H. Torwesten, R. Roth, F. Hille and F. Umbach, “New Assembly and Interconnects beyond Sintering Methods,” Proceedings of PCIM, pp. 232-237 (2010).
[30]S. W. Yoon, Michael D. Glover and K. Shiozaki, “Nickel-Tin Transient Liquid Phase Bonding Towards High Temperature Operational Power Electronics in Electrified Vehicles,” 2011 IEEE.
[31]Printed Circuits Handbook, Editor Clyde F. Coombs, Jr., 4th edition, McGraw-Hill., New York, 1995.
[32]Y. Yamada, Y. Takaku, Y. Yagi, Y. Nishibe, I. Ohnuma, Y. Sutou, R. Kainuma and K. Ishida, “Pb-free high temperature solders for power device packaging,” Microelectronics and Reliability, pp.1932-1937, 2006.
[33]X. Liu, S. Haque, J. Wang, and G. Q. Lu, “Packaging of integrated power electronics modules using flip-chip technology,” IEEE Applied Power Electronics Conference and Exposition, 1, pp. 290-296, New Orleans, LA, 2000.
[34]T. B. Massalski, P. R. Subramanian and L. Kacprzak, "Binary Alloy Phase Diagrams," ASM International, 1990.
[35]Z. Mei, M. Ahmad, M. Hu and G. Ramakrishna, “Kirkendall voids at Cu/solder interface and their effects on solder joint reliability,” ECTC 2005, pp. 415 - 420.
[36]H. Baker, ASM Handbook of alloy phase diagram vol. 3: ASM international: Materials Park, 1992.
[37]T. Kanata, K. Nishiwaki, and K. Hamada, "Development trends of power semiconductors for hybrid vehicles," in the Proceeding of International Power Electronics Conference (IPEC), Sapporo, Japan, 2010, pp. 778 - 782.
[38]D. Jacobson and G. Humpston, "Diffusion soldering," Soldering & Surface Mount Technology, vol. 4, pp. 27-32, 1992.
[39]I. Kovács and G. Vörös, "On the mathematical description of the tensile stress-strain curves of polycrystalline face centered cubic metals," International journal of plasticity, vol. 12, pp. 35-43, 1996.
[40]B. Rowden, A. Mantooth, S. Ang, A. Lostetter, J. Hornberger, and B. McPherson, "High Temperature SiC Power Module Packaging," in the Proceeding of ASME 2009 International Mechanical Engineering Congress and Exposition (IMECE2009) Lake Buena Vista, Florida, USA 2009, pp. 85-90.
[41]M. Purschel and K. Roschlau, “Diffusion soldering for automotive power MOSFETs offers the first 100% lead free die attach,” Power Electronics and Applications (EPE 2011), Proceedings of the 2011-14th European Conference, pp. 1 – 7.
[42]J. Wang, H. K. Lim, H. S. Lew, W. T Saw, C. H Tan. A test method for assessing of solder joint reliability of FCBGA package. Microelect Reliab 2004; 44:833–40.
[43]J. Kloeser. High-performance flip chip package with copper pillar bumping. Global SMT Package 2006(May):28–31.
[44]S. Zama, D. F. Baldwin, T. Hikami and H. Murata, “Flip chip interconnection systems using copper wire stud bump and lead-free solder,” IEEE Trans Elect Packag Manuf 2001;24(4):261–8.
[45]C. Howard, S. Nair, S. Ang and L. Schaper, “An investigation of conductive polymer flip chip attachment in multichip module applications,” In: Elect Comp Technol Conf; May 21–24, 1995. p. 1244–9.
[46]D. Chang, Y. P. Wang and C. S. Hsiao, “High performance coreless flip chip BGA packaging technology,” Proceeding of Electronic Component and Technology Conference, 2007, pp. 1765-1768.
[47]R. Sung, K. Chiang, Y. P. Wang and C. S. Hsiao, “Comparative analysis of electrical performance on coreless and standard flip-chip substrate,” Proceeding of Electronic Component and Technology Conference, 2007, pp. 1921-1924.
[48]D. Chang, Y. P. Wang and C. S. Hsiao, “High performance coreless flip-chip BGA packaging technology,” Proceeding of Electronic Component and Technology Conference, 2007, 1765-1768.
[49]M. Koide, K. Fukuzono, H. Yoshimura and T. Sato, “High-performance flip-chip BGA technology based on thin-core and coreless package substrate,” Proceeding of Electronic Component and Technology Conference, 2006, 1869-1873.
[50]K. Sakuma, E. Blackshear, K. Tunga, Chenzhou Lian, Shidong Li, M. Interrante, O. Mantilla and Jae-Woong Nah, “Flip chip assembly method employing differential heating/cooling for large dies with coreless substrates,” Proceeding of Electronic Component and Technology Conference, 2013, 667-673.
[51]C. C. Chuang, T. F. Yang, J. Y. Juang, Y. P. Hung, C. J. Zhan, Y. M. Lin, C. T. Lin, P. C. Chang and T. C. Chang, “Influence of underfill materials on the reliability of coreless flip chip package,” Microelectronics Reliability, 48 (2008) 1875-1881.
[52]Temperature cycling, JESD22-A104-B, JEDEC, July 2000.
[53]T. H. Wang, Y. S. Lai and J. D. Wu, “Effect of underfill thermomechanical properties on thermal cycling fatigue reliability of flip chip ball grid array,” J. Electronic Packaging, 126 (2004) 560-564.
[54]R. S. Cheng, H. J. Chang, T. C. Chang and J. H. Chou, “Early failure induced by phase transformation in microjoints for chip-level integration,” Electrochemical and Solid-State Letters, 15 (3), H75-H77 (2012).
[55]J. H. Lau, Reliability of RoHS Compliant 2D & 3D IC Interconnects, MsGraw-Hill, NY, 2011.
[56]C. J. Zhan et al., “Assembly and reliability characterization of 3D chip stacking with 30 μm pitch lead-free solder microbump interconnection,” ECTC 2010 proceedings, pp. 1043-1049.
[57]C. K. Lee, T. C. Chang, Y. J. Huang, H. C. Fu, J. H. Huang, Z. C. Hsiao, J. H. Lau, C. T. Ko, R. S. Cheng, P. C. Chang, K. S. Kao, Y. L. Lu, R. Lo, and M. J. Kao, “Characterization and reliability assessment of solder microbumps and assembly for 3D IC integration,” in Proc. Electron. Compon. Technol. Conf., Lake Buena Vista, FL, 2011, pp. 1468–1474.
[58]S. Wiese and S. Rzepka, “Time-independent elastic-plastic behavior of solder materials,” Microelectron. Reliab., 44, pp. 1893-1900 (2004).
[59]R. Iannuzzelli, in Proceedings of Electronic Components and Technology Conference, IEEE, pp. 410-421 (1991).
[60]S. Wiese and S. Rzepka, “Time-independent elastic-plastic behavior of solder materials,” Microelectron. Reliab., 44, 1893–1900 (2004).
[61]R. Iannuzzelli, in Proceedings of Electronic Components and Technology Conference, IEEE, pp. 410-421 (1991).
[62]C. C. Lee, T. F. Yang, C. S. Wu, K. S. Kao, R. C. Cheng, and T. H. Chen, “Reliability Estimation and Failure Mode Prediction for 3D Chip Stacking Package with the Application of Wafer-Level Underfill,” Microelectron. Eng., 107, 107-113 (2013).
[63]C. C. Lee, K. C. Chang, and Y. W. Yang, “Lead-Free Solder Joint Reliability Estimation of Flip Chip Package Using FEM-Based Sensitivity Analysis,” Solder. Surf. Mt. Technol., 21, 31-41 (2009).
[64]C. C. Lee, H. C. Liu, and K. N. Chiang, “3D Structure Design and Reliability Analysis of Wafer Level Package with Stress Buffer Mechanism,” IEEE Trans. Compon. Packaging Technol., 30, 110-118 (2007).
[65]C. A. Yuan, C. N. Han, M. C. Yew, C. Y. Chou, and K. N. Chiang, “Design, analysis and development of novel three-dimensional stacking WLCSP,” IEEE Trans. Adv. Packag., 28, 387-396 (2005).
[66]J. C. Lin, H. C. Cheng, and K. N. Chiang, “Design and analysis of wafer-level CSP with double pad structure,” IEEE Trans. Compon. Packaging Technol., 28, 117-126 (2005).
[67]F. Feustel, S. Wiese and E. Meusel, “Time-dependent material modeling for finite element analyses of flip chips,” Proceeding of Electronic Component and Technology Conference, 2000, 1548-1553.
[68]S. Wiese, E. Meusel and K. J. Wolter, “Microstructural dependence of constitutive properties of eutectic SnAg and SnAgCu solders,” Proceeding of Electronic Component and Technology Conference, 2003, 197-206.
[69]S. Wiese and S. Rzepka, “Time-independent elastic–plastic behaviour of solder materials,” Microelectronics Reliability, 44, 2004, 1893-1900.
[70]S. Nakahara, R. J. Mccoy, L. Buene, and J. M. Vandenberg, “Room-temperature-diffusion studies of Au-Sn thin-film couples,” Thin Solid Films, vol. 84, nos. 2–9, pp. 185–196, 1981.
[71]A. K. Bandyopadhyay and S. K. Sen, “A study of intermetallic compound formation in a copper-tin bimetallic couple,” J. Appl. Phys., vol. 67, no. 8, pp. 3681–3688, 1990.
[72]J. R. Lloyd, N. A. Connelly, X. He, K. J. Ryan and B. H. Wood, Microelectron. Reliab. 50 (2010) 1355-1358.
[73]S. G. Shabestari and J.E. Gruzleski, Metall. Mater. Trans. A, 26 (1995) 999-1006.
[74]H. K. Kim and K. N. Tu, Appl. Phys. Lett. 68 (1996) 2204-2206.
[75]J. H. Lee, D. J. Park, J. N. Heo, Y. H. Lee, D. H. Shin and Y. S. Kim, Scripta Mater. 42 (2000) 827-831.
[76]H. F. Zou and Z. F. Zhang, J. Electron. Mater. 37 (2008) 1119-1129.
[77]H. J. Chang, J. H. Chou, T. C. Chang, C. J. Zhan, M. H. Hon and C. S. Hsi, J. Electron. Packaging, 133 (2011) 021004-1.
[78]C. T. Peng, C. T. Kuo, K. N. Chiang, T. Ku and K. Chang, Microelectron. Reliab. 46 (2006) 523-534.
[79]K. N. Tu and K. Zeng, Mat. Sci. Eng. R, 34 (2001) 1-58.
[80]T. Y. Lee, W. J. Choi, K. N. Tu, J. W. Jang, S. M. Kuo, J. K. Lin, D. R. Frear, K. Zeng and J. K. Kivilahti, J. Mater. Res. 17 (2002) 291-301.
[81]S. Y. Huang, T. C. Chang, R. S. Cheng, J. Y. Chang, C. W. Fan, C. J. Zhan, J. H. Lau, T. H. Chen, W. C. Lo, and M. J. Kao, “Failure mechanism of 20 μm pitch microjoint within a chip stacking architecture,” in Proc. IEEE Electron. Compon. Technol. Conf., Lake Buena Vista, FL, May–Jun. 2011, pp. 886–892.
[82]H. F. Zou, Q. K. Zhang, and Z. F. Zhang, “Interfacial microstructure and growth kinetics of intermetallic compound layers in Sn4Ag/Cu-X (X = Zn, Ag, Sn) couples,” J. Electron. Mater., vol. 40, no. 7, pp. 1542–1548, 2011.
[83]M. Oh, Intermetallic Growth and Kirkendall Effect Manifestations in Cu/Sn and Au/Sn Diffusion Couples. Eindhoven, The Netherlands: Lehigh Univ., 1994.
[84]L. Bernstein, “Semiconductor joining by the SLID process,” J. Electrochem. Soc., vol. 113, no. 12, pp. 1282–1288, 1966.
[85]W. D. Callister, Materials Science and Engineering, An Introduction, 5th edition, John Wiley & Sons.
[86]H. P. R. Frederikse, R. J. Fields and A. Feldman, “Thermal and Electrical Properties of Cu-Sn and Ni-Sn Intermetallics,” Journal of Applied Physics, 72 (7), 2879-2882, 1992.
[87]S. Ahat, M. Sheng and L. Luo, “Effects of Static Thermal Aging and Thermal Cycling on the Microstructure and Shear Strength of Sn95.5Ag3.8Cu0.7 Solder Joints,” Journal of Materials Research, 16 (10), 2914-2921, 2001.
[88]S. Y. Huang, T. C. Chang, R. S. Cheng, J. Y. Chang, F. J. Leu, Y. L. Lu and T. F. Yang, “Reliability Assessment of the 20 m Pitch Microjoints within a 3DIC Assembly under Various Environments,” Proceedings of International Microsystems Packaging Assembly and Circuits Technology Conference, pp. 1-4, 2010.
[89]R. W. Yang, Y. W. Chang, C. Chen, T. C. Chang, C. J. Zhan and J. Y. Juang, “Microstructure Evolution in Microbumps for 3D-IC Packaging,” Proceedings of International Microsystems Packaging Assembly and Circuits Technology Conference, pp. 1-4, 2010.
[90]R. W. Yang, Y. W. Chang, C. Chen, T. C. Chang, C. J. Zhan and J. Y. Juang, “Agglomeration of Ag3Sn Compound in Microbumps during Reflow for 3D-IC Packaging,” Proceedings of International Microsystems Packaging Assembly and Circuits Technology Conference, pp. 1-4, 2010.
[91]J. Shen, Y. C. Chan and S. Y. Liu, Acta Mater. 57 (2009) 5196-5206.
[92]T. C. Chang, M. C. Wang and M. H. Hon, J. Cryst. Growth, 252 (2003) 401-412.
[93]H. T. Lee and M. H. Chen, Mat. Sci. Eng. A333 (2002) 24-34.
[94]H. D. Blair, T. Y. Pan and J. M. Nicholson, Proceedings of Electronic Component Technology Conference, Seattle, WA, USA, pp. 259-267 (1998).
[95]H. Dong, L. Fan, K. S. Moon, C. P. Wong and M. I. Baskes, Modelling Simul. Mater. Sci. Eng. 13 (2005) 1279-1290.
[96]S. H. Kim and J. Yu, “Secondary IMC formation induced by Kirkendall voiding in Cu/Sn3.5Ag solder joints,” J. Mater. Res., vol. 25, no. 9, pp. 1854–1858, 2010.
[97]J. Y. Song, J. Yu, and T. Y. Lee, “Effect of reactive diffusion on stress evolution in Cu-Sn films,” Scripta Mater., vol. 51, no. 2, pp. 167–170, 2004.
[98]S. H. Chae, B. Chao, X. Zhang, J. Im, and P. S. Ho, “Investigation of intermetallic compound growth enhanced by electromigration in Pbfree solder joints,” in Proc. Electron. Compon. Technol. Conf., Reno, NV, 2007, pp. 1442–1449.
[99]S. Kumar, C. A. Handwerker, and M. A. Dayananda, “Intrinsic and Interdiffusion in Cu-Sn System,” J. Phase Equilibria Diffusion, vol. 32, no. 4, pp. 309–319, 2011.
[100]T. C. Chang, R. S. Cheng, P. C. Chang, Y. P. Hung, and J. Y. Chang,“Reliability characterization of 20 μm pitch microjoints assembly by a conventional reflow technique,” in Proc. Int. Conf. Electron. Packag., 2011, pp. 221–226.
[101]J. Kim, S. Lee, J. Lee, S. Jung and C. Ryu, “Warpage issues and assembly challenges using coreless package substrate,” IPC APEX EXPO Proceedings, 2012.
[102]T. Y. Tee, H. S. Ng and Z. Zhong, “Board level solder joint reliability analysis of stacked die mixed flip-chip and wirebond BGA,” Microelectronics Reliability, 46, 2006, 2131-2138.
[103]Flip Chip CSP Packages, AND8081/D, ON Semiconductor, May 2012.
[104]S. S. Ha and S. B. Jung, “Thermal and mechanical properties of flip chip package with Au stud bump,” Materials Transactions, 54, 2013, 905-910.
[105]M. M. Hossain, S. R. Aravamudhan, M. Nowakowski, X. Ma, S. S. Walwadkar, V. Kulkarni and S. Muthukumar, “Board level solder joint assembly and reliability for ultra thin BGA packages,” Proceeding of Electronic Component and Technology Conference, 2012, 43-48.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top