跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/07/31 20:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝亦傑
研究生(外文):Yi-Chieh Hsieh
論文名稱:差排和斯皮諾達奈米結構在2205雙相不銹鋼中交互作用之研究
論文名稱(外文):The interaction between dislocations and the spinodal nanostructure in a 2205 duplex stainless steel
指導教授:楊哲人楊哲人引用關係
指導教授(外文):Jer-Ren Yang
口試委員:葉均蔚黃慶淵林新智王星豪
口試委員(外文):Jien-Wei YehChing-Yuan HuangHsin-Chih LinShing-Hoa Wang
口試日期:2015-06-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:95
中文關鍵詞:雙相不銹鋼斯皮諾達結構穿透式電子顯微鏡同步觀測奈米壓痕試驗聚焦離子束顯微鏡
外文關鍵詞:Duplex stainless steelSpinodal structureTransmission Electron Microscopy (TEM)In-situ nanoindentationFocused Ion Beam microscopy (FIB)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
2205雙相不銹鋼在475ºC時效後會產生嚴重的脆化現象,本研究觀察了無時效和475ºC時效64小時後的試片微結構在不同形變測試中的表現,試圖以比較兩者的差異來推估脆化的原因和斯皮諾達奈米結構對差排的影響。此時效熱處理使2205雙相不銹鋼中的δ肥粒鐵相生成5至10奈米間隔大小的斯皮諾達奈米結構,然而差排的特徵和數量並無因時效而有所改變,在Charpy衝擊試驗過後發現斯皮諾達結構會限制差排的滑移,使得δ肥粒鐵中的差排變得彎曲或呈波浪狀。
在輔以穿透式電子顯微鏡的同步觀測奈米壓痕試驗中,斯皮諾達奈米結構會使得差排的移動速度下降並限制差排的交叉滑移,此現象會在時效後的奈米柱中造成較高的差排密度和平直的滑移面,因此時效後的δ肥粒鐵奈米柱在試驗後會明顯地強化,此平直的滑移面為活化能最低的(0¯1 1),而差排的外觀則呈現直線狀並互相垂直交錯,形成被視為不利差排運動的十字繡圖案。
在輔以縱切面穿透式電子顯微鏡觀察的奈米壓痕試驗中,差排和斯皮諾達結構的交互作用在不同的應變量下有不同的表現,在應變量中等的塑性變形區邊緣,斯皮諾達結構使差排形成十字繡圖案和明顯的滑移帶,和同步觀測奈米壓痕試驗中的差排特徵相當類似;在應變量較大的塑性變形區中心,差排受到斯皮諾達結構的影響而彎曲並大量累積在壓痕附近,此現象則類似於Charpy衝擊試驗的結果。由以上的實驗可知斯皮諾達奈米結構會嚴重影響差排的行為,進而限制δ肥粒鐵相的變形能力,因此時效後的2205雙相不銹鋼無法產生較大的形變來吸收衝擊能並呈現出劈裂破壞。


A 2205 duplex stainless steel is susceptible to severe embrittlement after aging at 475ºC. Microstructures of the unaged and aged specimens (heat-treated at 475ºC for 64h) were investigated by different deformation tests, in order to elucidate the cause of this embrittlement and interaction between dislocations and the spinodal nanostructure.
Before deformation, the aging treatment was found to bring about a spinodal nanostructure with 5-10nm interlocking domains in the δ-ferrite phase and the related dislocation characteristics were not changed by aging. After high strain and high strain rate deformation in Charpy impact tests, the dislocations in the aged δ-ferrite grain were curved individually or composed of small waves, caused by the pinning effect of the spinodal nanostructure.
In-situ compression tests in a transmission electron microscope were carried out to investigate the deformation behaviors of the unaged and aged δ-ferrite nanopillars. The results indicated that the spinodal nanostructure confined the moving velocity and cross-slip of dislocations during deformation. These behaviors resulted in a high dislocation density and smooth slip-bands, leading to significant strengthening of the aged δ-ferrite nanopillars after compression. The smooth slip-plane was the (0¯1 1) with the lowest activation energy. After compression, the “cross-stitch” pattern with straight and perpendicular dislocations formed in the aged pillars and was regarded as a characteristic of the immobilization of dislocations.
Through the nanoindentation test with a cross-sectional TEM analysis technique, the interaction between dislocations and the spinodal structure was found to be strain-related. On the edge of the semicircular plastic zone with a moderate strain, the straight dislocations with a cross-stitch pattern and smooth slip bands were found in the aged film, similar to the result of the in-situ nanoindentation test. At the center of the semicircular plastic zone with a high strain, the dislocations were curved and highly compacted in the aged film because of the drag effect of the spinodal nanostructure and early formed dislocations, similar to the dislocation characteristics observed in the Charpy impact test.
From the investigation above, it can be concluded that the spinodal nanostructure seriously affected the dislocation behaviors, resulting in the poor deformation ability of the aged δ-ferrite phase. Therefore, the aged 2205 duplex stainless steel lost the ability to accommodate high impact energy and led to the cleavage fracture.


口試委員會審定書 #
誌謝 i
中文摘要 ii
Abstract iii
Contents v
List of Figures viii
List of Tables xiii
Chapter 1 Introduction
Chapter 2 Literature Survey
2.1 Development and Microstructure of Duplex Stainless Steels 4
2.2 Phase Transformation in Duplex Stainless Steels 5
2.2.1 Secondary austenite 6
2.2.2 σ phase 7
2.2.3 Cr2N 8
2.2.4 M7C3 and M23C6 8
2.2.5 χ phase 8
2.2.6 R, τ and π phase 9
2.2.7 α’ and G phase 9
2.3 Spinodal Structure and 475ºC Embrittlement 9
2.3.1 Spinodal Decomposition 9
2.3.2 Spinodal Structure 11
2.3.3 Low Temperature Aging Embrittlement 11
2.4 Effects of spinodal structures on mechanical properties of duplex stainless steels 12
2.4.1 Tensile Behavior 13
2.4.2 Fatigue Behavior 14
2.4.3 Dislocation Characterization 15
2.5 Nanoindentation Techniques 16
2.5.1 Nanoindentation 16
2.5.2 Nanoindentation with FIB fabrications 17
2.5.3 In-situ Nanoindenation in a TEM 18
Chapter 3 The Effect of the Spinodal Structure on the Impact Test in a 2205 Duplex Stainless Steel
3.1 Introduction 32
3.2 Experimental Procedure 33
3.3 Results and Discussion 34
3.3.1 Nanostructure analysis without deformation 34
3.3.2 Nanostructure analysis after Charpy impact tests 37
3.4 Conclusions 41
Chapter 4 In-situ TEM Investigation of the Deformation Behavior of Spinodal Nanostructured δ-ferrite in a 2205 Duplex Stainless Steel
4.1 Introduction 52
4.2 Experimental Procedure 53
4.3 Results and Discussion 54
4.4 Conclusions 59
Chapter 5 The Effect of Strains on the Interaction between Dislocations and the Spinodal Structure in a 2205 Duplex Stainless Steel
5.1 Introduction 69
5.2 Experimental Procedure 71
5.3 Results and Discussion 72
5.4 Conclusions 76
Chapter 6
6.1 General Conclusions 85
6.2 Future Works 86
Appendices 88
Appendix I In-situ compression movies 88
Appendix II Parameters of in-situ nanoindentation tests 88
Reference 92

[1] H. Sieurin and R. Sandström, Materials Science and Engineering: A, 444 (2007) 271-276.
[2] T.H. Chen, K.L. Weng and J.R. Yang, Materials Science and Engineering: A, 338 (2002) 259-270.
[3] C. Chen, H. Yen and J. Yang, Scripta Materialia, 56 (2007) 673-676.
[4] M.K. Miller, J.M. Hyde, A. Cerezo and G.D.W. Smith, Applied Surface Science, 87–88 (1995) 323-328.
[5] O. Soriano-Vargas, E.O. Avila-Davila, V.M. Lopez-Hirata, N. Cayetano-Castro and J.L. Gonzalez-Velazquez, Materials Science and Engineering: A, 527 (2010) 2910-2914.
[6] K.L. Weng, H.R. Chen and J.R. Yang, Materials Science and Engineering: A, 379 (2004) 119-132.
[7] S.S.M. Tavares, R.F. de Noronha, M.R. da Silva, J.M. Neto and S. Pairis, Materials Research, 4 (2001) 237-240.
[8] J.-O. Nilsson, Materials Science and Technology, 8 (1992) 685-700.
[9] J.-O. Nilsson and P. Liu, Material Science and Technology, 7 (1991) 853-862.
[10] F. Dupoiron and J.P. Audouard, Scandinavian Journal of Metallurgy, 25 (1996) 685.
[11] E.C. Bain and W.E. Greffiths, Transactions of the Metallurgical Society of the American Institute of Mechanical Engineers, 75 (1927) 166-211.
[12] M.B. Cortie and J.H. Potgieter, Metallurgical Transactions A, 22 (1991) 2173-2179.
[13] R.C. Newman and T. Shahrab, Corrosion Science, 8 (1987) 827-838.
[14] H. Kajimura, K. Ogawa and H. Nagano, The Iron and Steel Institute of Japan International, 31 (1991) 216-222.
[15] J.O. Nilsson, T. Huhtala, P. Jonsson, L. Karlsson and A. Wilson, Metallurgical and Materials Transactions A, 27 (1996) 2196-2208.
[16] B. Soylu and R.W.K. Honeycombe, Materials Science and Technology, 7 (1991) 137-146.
[17] C.S. Lee, H.S. Shin and D.M. Li, The Iron and Steel Institute of Japan International, 37 (1997) 1146-1152.
[18] H. Hoffmeister and R. Mundt, Archiv für das Eisenhüttenwesen, 52 (1981) 159-164.
[19] C.H. Shek, K.W. Wong and J.K.L. Lai, Materials Science and Engineering: R: Reports, 19 (1997) 153-200.
[20] M.L.G. Byrnes, M. Grujicic and W.S. Owen, Acta Metallurgica, 35 (1987) 1853-1862.
[21] W. Horvath, W. Prantl, H. Stroißnigg and E.A. Werner, Materials Science and Engineering: A, 256 (1998) 227-236.
[22] K.H. Lo, C.H. Shek and J.K.L. Lai, Materials Science and Engineering: R: Reports, 65 (2009) 39-104.
[23] J. Charles, Proceedings of the Duplex Stainless Steels 1991, 1 (1991) 4-48.
[24] V. Stergiou and G. Papadimitriou, Journal of Materials Science, 47 (2012) 2110-2121.
[25] T. Chen and J. Yang, Materials Science and Engineering: A, 338 (2002) 166-181.
[26] H. Liu and X. Jin, Journal of Materials Science & Technology, 28 (2012) 249-254.
[27] M. Hillert, Metallurgical and Materials Transactions A, 17 (1986) 741-741.
[28] K. Yurtisik, S. Tirkes, I. Dykhno, C.H. Gur and R. Gurbuz, Soldagem & Inspeção, 18 (2013) 207-216.
[29] P. Southwick and R. Honeycombe, Metal Science, 14 (1980) 253-261.
[30] C. Chen, H.W. Yen, T. Yu and J.R. Yang, Materials Science Forum, 2007, 4881-4886
[31] E. de Monlevade, H. Goldenstein and I. Falleiros, Journal of Materials Science, 45 (2010) 5089-5093.
[32] E. Brown, M. Burnett, P. Purtscher and G. Krauss, Metallurgical Transactions A, 14 (1983) 791-800.
[33] G. Bergman and D.P. Shoemaker, Acta Crystallographica, 7 (1954) 857-865.
[34] J.-O. Nilsson, P. Kangas, A. Wilson and T. Karlsson, Metallurgical and Materials Transactions A, 31 (2000) 35-45.
[35] T. Chen and J. Yang, Materials Science and Engineering: A, 311 (2001) 28-41.
[36] W. Reick, M. Pohl and A.F. Padilha, The Iron and Steel Institute of Japan International, 38 (1998) 567-571.
[37] C.H. Shek, G. Shen, J.K.L. Lai and B.J. Duggan, Materials Science and Technology, 10 (1994) 306-311.
[38] J. Kasper, Acta Metallurgica, 2 (1954) 456-461.
[39] Y. Shimoide, J. Cui, C.-Y. Kang and K. Miyahara, The Iron and Steel Institute of Japan International, 39 (1999) 191-194.
[40] J. Kolts, Metals Handbook Ninth Edition, 13 (1987) 647-652.
[41] J. Smith, R. Hamilton, I. McCulloch, N. Stingelin-Stutzmann, M. Heeney, D.D.C. Bradley and T.D. Anthopoulos, Journal of Materials Chemistry, 20 (2010) 2562-2574.
[42] F. Danoix, B. Deconihout, A. Bostel and P. Auger, Surface science, 266 (1992) 409-415.
[43] D.A. Porter, K.E. Easterling and M. Sherif, Phase Transformations in Metals and Alloys, (2011) 310-311.
[44] J.W. Cahn, Acta Metallurgica, 9 (1961) 795-801.
[45] M.K. Miller and M.G. Hetherington, Scripta Metallurgica et Materialia, 24 (1990) 1375-1380.
[46] J.K. Sahu, U. Krupp, R.N. Ghosh and H.J. Christ, Materials Science and Engineering: A, 508 (2009) 1-14.
[47] D. Jenko, S. Mandziej, C. Toffolon-Masclet, B. Sustarsic and M. Jenko, Materials and technology, 48 (2014) 131-135.
[48] J.J. Shiao, C.H. Tsai, J.J. Kai and J.H. Huang, Journal of Nuclear Materials, 217 (1994) 269-278.
[49] A. Gironès, L. Llanes, M. Anglada and A. Mateo, Materials Science and Engineering: A, 367 (2004) 322-328.
[50] C. Örnek, D.L. Engelberg, S.B. Lyon and T.L. Ladwein, Corrosion Management Magazine, (2013) 9-11.
[51] M. Nyström and B. Karlsson, Materials Science and Engineering: A, 215 (1996) 26-38.
[52] J.B. Vogt, K. Massol and J. Foct, International Journal of Fatigue, 24 (2002) 627-633.
[53] J. Vitek, Metallurgical and Materials Transactions A, 18 (1987) 154-156.
[54] M. Vrinat, R. Cozar and Y. Meyzaud, Scripta Metallurgica, 20 (1986) 1101-1106.
[55] A. Mateo, L. Llanes, M. Anglada, A. Redjaimia and G. Metauer, Journal of Materials Science, 32 (1997) 4533-4540.
[56] J.K. Sahu, Effect of 475°C Embrittlement on the Fatigue Behaviour of a Duplex Stainless Steel, Doctoral Dissertation, University Siegen, 2008
[57] O.A. Hilders, M. Ramos, N.D. Peña and L. Sáenz, Journal of Materials Engineering and Performance, 8 (1999) 87-90.
[58] S. Bugat, J. Besson, A.F. Gourgues, F. N''Guyen and A. Pineau, Materials Science and Engineering: A, 317 (2001) 32-36.
[59] S. Hereñú, M. Sennour, M. Balbi, I. Alvarez-Armas, A. Thorel and A.F. Armas, Materials Science and Engineering: A, 528 (2011) 7636-7640.
[60] M.K. Miller and J. Bentley, Materials Science and Technology, 6 (1990) 285-292.
[61] A. Gouldstone, H.J. Koh, K.Y. Zeng, A.E. Giannakopoulos and S. Suresh, Acta Materialia, 48 (2000) 2277-2295.
[62] L. Zhang, T. Ohmura, A. Shibata and K. Tsuzaki, Materials Science and Engineering: A, 527 (2010) 1869-1874.
[63] T. Ohmura, K. Tsuzaki, N. Tsuji and N. Kamikawa, Journal of Materials Research, 19 (2004) 347-350.
[64] K. Sekido, T. Ohmura, L. Zhang, T. Hara and K. Tsuzaki, Materials Science and Engineering: A, 530 (2011) 396-401.
[65] T. Ohmura, L. Zhang, K. Sekido and K. Tsuzaki, Journal of Materials Research, 27 (2012) 1742-1749.
[66] T. Ohmura, K. Sawada, K. Kimura and K. Tsuzaki, Materials Science and Engineering: A, 489 (2008) 85-92.
[67] J.R. Greer, W.C. Oliver and W.D. Nix, Acta Materialia, 53 (2005) 1821-1830.
[68] J.R. Greer and W.D. Nix, Physical Review B, 73 (2006) 245410.
[69] L.W. Ma, J.M. Cairney, M.J. Hoffman and P.R. Munroe, Applied Surface Science, 237 (2004) 627-631.
[70] L.W. Ma, J.M. Cairney, M.J. Hoffman and P.R. Munroe, Surface and Coatings Technology, 200 (2006) 3518-3526.
[71] L.W. Ma, J.M. Cairney, M. Hoffman and P.R. Munroe, Surface and Coatings Technology, 192 (2005) 11-18.
[72] T.H. Ahn, C.S. Oh, D.H. Kim, K.H. Oh, H. Bei, E.P. George and H.N. Han, Scripta Materialia, 63 (2010) 540-543.
[73] T.H. Ahn, S.B. Lee, K.T. Park, K.H. Oh and H.N. Han, Materials Science and Engineering: A, 598 (2014) 56-61.
[74] T.H. Ahn, S.B. Lee, H.N. Han and K.T. Park, Proceedings of the Korean Nuclear Society 2013, (2013) 405-406.
[75] L. Zhang, N. Sekido and T. Ohmura, Materials Science and Engineering: A, 611 (2014) 188-193.
[76] L. Zhang, T. Ohmura, K. Seikido, K. Nakajima, T. Hara and K. Tsuzaki, Scripta Materialia, 64 (2011) 919-922.
[77] L. Zhang, T. Ohmura, K. Sekido, T. Hara, K. Nakajima and K. Tsuzaki, Scripta Materialia, 67 (2012) 388-391.
[78] K.Y. Xie, Y. Wang, S. Ni, X. Liao, J.M. Cairney and S.P. Ringer, Scripta Materialia, 65 (2011) 1037-1040.
[79] J.R. Greer and J.T.M. De Hosson, Progress in Materials Science, 56 (2011) 654-724.
[80] K.Y. Xie, S. Shrestha, Y. Cao, P.J. Felfer, Y. Wang, X. Liao, J.M. Cairney and S.P. Ringer, Acta Materialia, 61 (2013) 439-452.
[81] E. Hall and S. Algie, Metallurgical reviews, 11 (1966) 61-88.
[82] S. Eriksson, Jernkontorets Annaler, 118 (1934) 530-543.
[83] A. Rouault, P. Herpin and R. Fruchart, Annali di Chimica, 5 (1970) 461-470.
[84] A. Bowman, G. Arnold, E. Storms and N. Nereson, Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 28 (1972) 3102-3103.
[85] S. Rideout, W. Manly, E. Kamen, B. Lement and P.A. Beck, Transactions of the Metallurgical Society of the American Institute of Mechanical Engineers, 191 (1951) 872.
[86] J.W. Cahn and G. Kalonji, Proceedings of the Solid State Transformation, (1982) 3-14.
[87] D. Evans and K. Jack, Acta Crystallographica, 1957, 769-770
[88] M. Blackburn and J. Nutting, Journal of the Iron and Steel Institute, 202 (1964) 610-613.
[89] J. Vitek, S. David, D. Alexander, J. Keiser and R. Nanstad, Acta Metallurgica et Materialia, 39 (1991) 503-516.
[90] J.R. Yang and H.K.D.H. Bhadeshia, Welding Journal, 69 (1990) 305-307.
[91] R.J. Arsenault and R.M. Fisher, Scripta Metallurgica, 17 (1983) 67-71.
[92] R.J. Arsenault and N. Shi, Materials Science and Engineering, 81 (1986) 175-187.
[93] W. Horvath, W. Prantl, E. Werner and H.P. Stüwe, Materials Characterization, 34 (1995) 277-285.
[94] W. Reick, M. Pohl and A.F. Padilha, The Iron and Steel Institute of Japan International, 38 (1998) 567-571.
[95] T. Saeid, A. Abdollah-zadeh, T. Shibayanagi, K. Ikeuchi and H. Assadi, Materials Science and Engineering: A, 527 (2010) 6484-6488.
[96] J. Johansson and M. Odén, Metallurgical and Materials Transactions A, 31 (2000) 1557-1570.
[97] P.K. Chiu, K.L. Weng, S.H. Wang, J.R. Yang, Y.S. Huang and J. Fang, Materials Science and Engineering: A, 398 (2005) 349-359.
[98] C. Schamp, P. Hung and B. Min, Microscopy and Microanalysis, 18 (2012) 1038-1039.
[99] P.J. Phillips, M.C. Brandes, M.J. Mills and M. De Graef, Ultramicroscopy, 111 (2011) 1483-1487.
[100] D.A. Korzekwa, D.K. Matlock and G. Krauss, Metallurgical Transactions A, 15 (1984) 1221-1228.
[101] N. Kamikawa, Y. Abe, G. Miyamoto, Y. Funakawa and T. Furuhara, The Iron and Steel Institute of Japan International, 54 (2014) 212-221.
[102] T.J. Nichol, A. Datta and G. Aggen, Metallurgical Transactions A, 11 (1980) 573-585.
[103] T. de Nys and P.M. Gielen, Metallurgical Transactions, 2 (1971) 1423-1428.
[104] B.J. Inkson, T. Steer, G. Möbus and T. Wagner, Journal of Microscopy, 201 (2001) 256-269.
[105] B.B. He, M.X. Huang, Z.Y. Liang, A.H.W. Ngan, H.W. Luo, J. Shi, W.Q. Cao and H. Dong, Scripta Materialia, 69 (2013) 215-218.
[106] C.M. Pecnik, D. Courty, D. Muff and R. Spolenak, Journal of the Mechanical Behavior of Biomedical Materials, 47 (2015) 1-11.
[107] F. Soldera, Y. Gaillard, M.A. Gomila and F. Muecklich, Microscopy and Microanalysis, 13 (2007) 1510-1511.
[108] D.R.P. Singh, N. Chawla and Y.L. Shen, Materials Characterization, 61 (2010) 481-488.
[109] Y. Katoh, M. Ando and A. Kohyama, Journal of Nuclear Materials, 323 (2003) 251-262.
[110] W. Zielinski, H. Huang and W.W. Gerberich, Journal of Materials Research, 8 (1993) 1300-1310.
[111] W. Püschl, Progress in Materials Science, 47 (2002) 415-461.
[112] P.J. Jackson and D. Kuhlmann-Wilsdorf, Scripta Metallurgica, 16 (1982) 105-107.
[113] L. Zhang and T. Ohmura, Physical Review Letters, 112 (2014) 145504.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top