跳到主要內容

臺灣博碩士論文加值系統

(18.206.76.226) 您好!臺灣時間:2021/07/30 23:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊諭佩
研究生(外文):Yu-Pei Yang
論文名稱:高效能鈣鈦礦太陽能電池縱向化學成分及形貌分析
論文名稱(外文):Vertical composition and morphology analysis of high performance perovskite solar cells
指導教授:陳俊維陳俊維引用關係
指導教授(外文):Chun-Wei Chen
口試委員:邱雅萍陳良益
口試委員(外文):Ya-Ping ChiuLiang-Yih Chen
口試日期:2015-06-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:72
中文關鍵詞:鈣鈦礦太陽能電池成分分析縱向分析成長機制甲胺鉛碘
外文關鍵詞:Perovskite solar cellcomposition analysisvertical analysisgrowth mechanismCH3NH3PbI3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有機-無機混摻鈣鈦礦材料已成功地引入太陽能電池領域中,其作為太陽能電池的吸光層,在近幾年間光電轉換效率迅速的上升,目前有機-無機混摻鈣鈦礦太陽能電池的光電轉換效率最高已達到20%。根據相關研究指出,鈣鈦礦太陽能電池的光電轉換效率和鈣鈦礦薄膜的品質息息相關。本研究利用兩步驟沉積法製備有機-無機混摻鈣鈦礦太陽能電池,藉由調控不同濃度的甲基胺碘前驅溶液和二碘化鉛進行轉化反應,發現甲胺鉛碘的轉化程度受到甲基胺碘前驅溶液的濃度影響,因而設計出三種不同轉化率的鈣鈦礦薄膜,以探討不同反應程度之鈣鈦礦材料的結晶性質、表面形貌、化學成分和鈣鈦礦太陽能電池元件表現之間的關係。透過X光繞射和X光光電子能譜分析,我們說明了在轉化過程中三維的PbI6八面體網路和甲基胺碘陽離子之間的交互作用,此外,我們進一步的利用在不同入射角下的X光繞射分析,觀察鈣鈦礦薄膜在垂直方向上的結晶型態,了解鈣鈦礦薄膜縱向成分分布對於鈣鈦礦太陽能電池之影響,進而提出了完整鈣鈦礦結構的轉化機制。最後,我們首度發現二碘化鉛薄膜在表面的晶面排列方向與薄膜內層的排列方向不同,在薄膜表面晶面傾向單一方向排列,具有方向性;薄膜內層受到二氧化鈦鷹架層影響,晶面排列較無方向性,而且轉化而成的甲胺鉛碘會依序原本二碘化鉛晶面的排列方向生長。

Organic-inorganic hybrid perovskite materials have been successfully applied as light absorbers in photovoltaic cell, which boost rapidly in power conversion efficiency, up to 20%. According to the recent researches, the power conversion efficiency of perovskite solar cell depends on the quality of perovskite film significantly. In this study, we used two-step deposition method to fabricate organic-inorganic hybrid perovskite solar cells. We found that conversion ratios of CH3NH3PbI3 were influenced by controlling various concentration of CH3NH3I precursor solution. Therefore, three perovskite films with different conversion ratios were prepared to discuss the relationship between the crystallinity, morphology, chemical composition of perovskite films and photovoltaic performance of perovskite solar cells, respectively. Interaction between an extended three-dimensional network of PbI6 octahedral and CH3NH3I is demonstrated by XRD and XPS measurement. Moreover, we used XRD analysis at various incidence angles to observe the crystallization of perovskite films in vertical direction, to understand how the composition of perovskite in vertical distribution impacts on perovskite solar cell. Finally, we propose the conversion mechanism of perovskite. In addition, different orientations of crystal planes were first observed between the surface and the interior of PbI2 films. Crystal planes tend to arrange in single orientation on the surface of PbI2 films, while crystal planes in the interior are non-directional due to effect of TiO2 scaffold layer. Furthermore, similar orientations of crystal planes were also observed on the surface and in the interior of converted CH3NH3PbI3. Thus, these findings indicated that CH3NH3PbI3 grow along PbI2.

致謝 ................................................................................................................................... I
摘要 ................................................................................................................................ IV
ABSTRACT ..................................................................................................................... V
目錄 ................................................................................................................................ VI
圖目錄 ............................................................................................................................ IX
表目錄 .......................................................................................................................... XIV
第1 章 緒論............................................................................................................ 1
1.1 鈣鈦礦(Perovskite) ......................................................................................... 1
1.1.1 鈣鈦礦結構與性質 ............................................................................... 1
1.1.2 有機-無機混摻鈣鈦礦結構成長機制 ................................................. 2
1.2 鈣鈦礦太陽能電池之歷史發展 .................................................................... 5
第2 章 文獻回顧 ................................................................................................. 11
2.1 鈣鈦礦太陽能電池 ...................................................................................... 11
2.1.1 元件結構 ............................................................................................. 11
2.1.2 工作原理 ............................................................................................. 13
2.2 鈣鈦礦材料之製程方法 .............................................................................. 15
2.2.1 一步驟沉積法 ..................................................................................... 16
2.2.2 二步驟沉積法 ..................................................................................... 17
2.2.3 氣相沉積法 ......................................................................................... 17
2.3 鈣鈦礦材料之改善 ...................................................................................... 19
2.3.1 鈣鈦礦薄膜之表面形貌控制 ............................................................. 19
2.3.2 鈣鈦礦材料成分之影響 ..................................................................... 24
2.3.2.1 陽離子 ................................................................................................. 24
2.3.2.2 陰離子 ................................................................................................. 27
2.4 研究動機 ...................................................................................................... 31
第3 章 實驗方法 ................................................................................................. 32
3.1 實驗規劃 ...................................................................................................... 33
3.2 材料與元件製備 .......................................................................................... 34
3.2.1 電子傳輸層 ......................................................................................... 34
3.2.2 吸光層 ................................................................................................. 34
3.2.3 電洞傳輸層 ......................................................................................... 35
3.3 儀器與設備 .................................................................................................. 37
第4 章 結果與討論 ............................................................................................. 38
4.1 不同轉化程度的鈣鈦礦薄膜對元件的影響 .............................................. 38
4.1.1 不同轉化程度的鈣鈦礦薄膜之結晶型態分析 ................................. 38
4.1.2 鈣鈦礦太陽能電池的光電轉換效率 ................................................. 39
4.1.3 不同轉化程度的鈣鈦礦薄膜之表面形貌分析 ................................. 41
4.1.4 化學成分分析 ..................................................................................... 44
4.2 二碘化鉛和甲基胺碘之間的轉化反應 ...................................................... 46
4.2.1 反應不完整的鈣鈦礦結構 ................................................................. 47
4.2.2 反應完整的鈣鈦礦結構 ..................................................................... 49
4.3 不同轉化程度的鈣鈦礦薄膜之縱向分析 .................................................. 51
4.4 不同轉化程度的鈣鈦礦薄膜之光學及光電性質分析 .............................. 58
4.4.1 光學性質分析 ..................................................................................... 58
4.4.2 光電性質分析 ..................................................................................... 60
第5 章 結論.......................................................................................................... 62
第6 章 未來展望 ................................................................................................. 64
第7 章 參考文獻 ................................................................................................. 65

1. Cheng, Z.; Lin, J., Layered organic-inorganic hybrid perovskites: structure, optical
properties, film preparation, patterning and templating engineering.
CrystEngComm 2010, 12 (10), 2646-2662.
2. Cava, R. J.; Batlogg, B.; Espinosa, G. P.; Ramirez, A. P.; Krajewski, J. J.; Peck, W.
F.; Rupp, L. W.; Cooper, A. S., Superconductivity at 3.5 K in BaPb0.75Sb0.25O3:
why is Tc so low? Nature 1989, 339 (6222), 291-293.
3. Goldschmidt, V. M., Die Gesetze der Krystallochemie. Naturwissenschaften 1926,
14 (21), 477-485.
4. Weber, D., CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure Z.
Naturforsch. 1978, 33b, 1443-1445.
5. Weber, D., CH3NH3SnBrxI3-x(x = 0-3), a Sn(II)-System with Cubic Perovskite
Structure Z. Naturforsch. 1978 33b, 862-865
6. Kagan, C. R.; Mitzi, D. B.; Dimitrakopoulos, C. D., Organic-Inorganic Hybrid
Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors.
Science 1999, 286 (5441), 945-947.
7. Chondroudis, K.; Mitzi, D. B., Electroluminescence from an Organic−Inorganic
Perovskite Incorporating a Quaterthiophene Dye within Lead Halide Perovskite
Layers. Chemistry of Materials 1999, 11 (11), 3028-3030.
8. Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.;
Graetzel, M.; White, T. J., Synthesis and crystal chemistry of the hybrid perovskite
(CH3NH3)PbI3 for solid-state sensitised solar cell applications. Journal of
Materials Chemistry A 2013, 1 (18), 5628-5641.
9. Papavassiliou, G. C., Synthetic Three-and Lower-Dimensional Semiconductors
Based on Inorganic Units. Molecular Crystals and Liquid Crystals Science and
Technology. Section A. Molecular Crystals and Liquid Crystals 1996, 286 (1),
231-238.
10. Ponseca, C. S.; Savenije, T. J.; Abdellah, M.; Zheng, K.; Yartsev, A.; Pascher, T.;
Harlang, T.; Chabera, P.; Pullerits, T.; Stepanov, A.; Wolf, J.-P.; Sundström, V.,
Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge
Generation, High and Microsecond-Long Balanced Mobilities, and Slow
Recombination. Journal of the American Chemical Society 2014, 136 (14),
5189-5192.
11. Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.;
Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J., Electron-Hole Diffusion
Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber.
Science 2013, 342 (6156), 341-344.
12. Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C.-S.; Chang, J. A.; Lee, Y.
H.; Kim, H.-j.; Sarkar, A.; NazeeruddinMd, K.; Gratzel, M.; Seok, S. I., Efficient
inorganic-organic hybrid heterojunction solar cells containing perovskite
compound and polymeric hole conductors. Nat Photon 2013, 7 (6), 486-491.
13. Mitzi, D. B., Templating and structural engineering in organic-inorganic
perovskites. Journal of the Chemical Society, Dalton Transactions 2001, (1),
1-12.
14. Mitzi, D. B.; Chondroudis, K.; Kagan, C. R., Organic-inorganic electronics. IBM
Journal of Research and Development 2001, 45 (1), 29-45.
15. Mitzi, D. B.; Feild, C. A.; Harrison, W. T. A.; Guloy, A. M., Conducting tin halides
with a layered organic-based perovskite structure. Nature 1994, 369 (6480),
467-469.
16. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites
as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American
Chemical Society 2009, 131 (17), 6050-6051.
17. Niu, G.; Li, W.; Meng, F.; Wang, L.; Dong, H.; Qiu, Y., Study on the stability of
CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in
all-solid-state hybrid solar cells. Journal of Materials Chemistry A 2014, 2 (3),
705-710.
18. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon,
S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M.; Park, N.-G., Lead
Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic
Solar Cell with Efficiency Exceeding 9%. Scientific Reports 2012, 2, 591.
19. Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.
K.; Gratzel, M., Sequential deposition as a route to high-performance
perovskite-sensitized solar cells. Nature 2013, 499 (7458), 316-319.
20. Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J., Efficient
organometal trihalide perovskite planar-heterojunction solar cells on flexible
polymer substrates. Nat Commun 2013, 4.
21. Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.;
Liu, Y.; Yang, Y., Interface engineering of highly efficient perovskite solar cells.
Science 2014, 345 (6196), 542-546.
22. National Renewable Energy Laboratory (NREL).
23. Newcomer Juices Up the Race to Harness Sunlight. Science 2013, 342 (6165),
1438-1439.
24. Yongzhen, W.; Xudong, Y.; Han, C.; Kun, Z.; Chuanjiang, Q.; Jian, L.; Wenqin, P.;
Ashraful, I.; Enbing, B.; Fei, Y.; Maoshu, Y.; Peng, Z.; Liyuan, H., Highly compact
TiO 2 layer for efficient hole-blocking in perovskite solar cells. Applied Physics
Express 2014, 7 (5), 052301.
25. Kim, H.-S.; Lee, J.-W.; Yantara, N.; Boix, P. P.; Kulkarni, S. A.; Mhaisalkar, S.;
Grätzel, M.; Park, N.-G., High Efficiency Solid-State Sensitized Solar Cell-Based
on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer.
Nano Letters 2013, 13 (6), 2412-2417.
26. Dharani, S.; Mulmudi, H. K.; Yantara, N.; Thu Trang, P. T.; Park, N. G.; Graetzel,
M.; Mhaisalkar, S.; Mathews, N.; Boix, P. P., High efficiency electrospun TiO2
nanofiber based hybrid organic-inorganic perovskite solar cell. Nanoscale 2014, 6
(3), 1675-1679.
27. Kumar, M. H.; Yantara, N.; Dharani, S.; Graetzel, M.; Mhaisalkar, S.; Boix, P. P.;
Mathews, N., Flexible, low-temperature, solution processed ZnO-based perovskite
solid state solar cells. Chemical Communications 2013, 49 (94), 11089-11091.
28. Son, D.-Y.; Im, J.-H.; Kim, H.-S.; Park, N.-G., 11% Efficient Perovskite Solar Cell
Based on ZnO Nanorods: An Effective Charge Collection System. The Journal of
Physical Chemistry C 2014, 118 (30), 16567-16573.
29. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient
Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide
Perovskites. Science 2012, 338 (6107), 643-647.
30. Bi, D.; Moon, S.-J.; Haggman, L.; Boschloo, G.; Yang, L.; Johansson, E. M. J.;
Nazeeruddin, M. K.; Gratzel, M.; Hagfeldt, A., Using a two-step deposition
technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on
ZrO2 and TiO2 mesostructures. RSC Advances 2013, 3 (41), 18762-18766.
31. Cai, B.; Xing, Y.; Yang, Z.; Zhang, W.-H.; Qiu, J., High performance hybrid solar
cells sensitized by organolead halide perovskites. Energy & Environmental Science
2013, 6 (5), 1480-1485.
32. Conings, B.; Baeten, L.; De Dobbelaere, C.; D''Haen, J.; Manca, J.; Boyen, H.-G.,
Perovskite-Based Hybrid Solar Cells Exceeding 10% Efficiency with High
Reproducibility Using a Thin Film Sandwich Approach. Advanced Materials 2014,
26 (13), 2041-2046.
33. Christians, J. A.; Fung, R. C. M.; Kamat, P. V., An Inorganic Hole Conductor for
Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with
Copper Iodide. Journal of the American Chemical Society 2014, 136 (2), 758-764.
34. Qin, P.; Tanaka, S.; Ito, S.; Tetreault, N.; Manabe, K.; Nishino, H.; Nazeeruddin, M.
K.; Grätzel, M., Inorganic hole conductor-based lead halide perovskite solar cells
with 12.4% conversion efficiency. Nat Commun 2014, 5.
35. Marchioro, A.; Teuscher, J.; Friedrich, D.; Kunst, M.; van de Krol, R.; Moehl, T.;
Gratzel, M.; Moser, J.-E., Unravelling the mechanism of photoinduced charge
transfer processes in lead iodide perovskite solar cells. Nat Photon 2014, 8 (3),
250-255.
36. Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G., 6.5% efficient
perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3 (10), 4088-4093.
37. Shen, D.; Yu, X.; Cai, X.; Peng, M.; Ma, Y.; Su, X.; Xiao, L.; Zou, D.,
Understanding the solvent-assisted crystallization mechanism inherent in efficient
organic-inorganic halide perovskite solar cells. Journal of Materials Chemistry A
2014, 2 (48), 20454-20461.
38. Liu, M.; Johnston, M. B.; Snaith, H. J., Efficient planar heterojunction perovskite
solar cells by vapour deposition. Nature 2013, 501 (7467), 395-398.
39. Chen, C.-W.; Kang, H.-W.; Hsiao, S.-Y.; Yang, P.-F.; Chiang, K.-M.; Lin, H.-W.,
Efficient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential
Vacuum Deposition. Advanced Materials 2014, 26 (38), 6647-6652.
40. Hu, H.; Wang, D.; Zhou, Y.; Zhang, J.; Lv, S.; Pang, S.; Chen, X.; Liu, Z.; Padture,
N. P.; Cui, G., Vapour-based processing of hole-conductor-free CH3NH3PbI3
perovskite/C60 fullerene planar solar cells. RSC Advances 2014, 4 (55),
28964-28967.
41. Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.;
Yang, Y., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution
Process. Journal of the American Chemical Society 2014, 136 (2), 622-625.
42. Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J.,
Morphological Control for High Performance, Solution-Processed Planar
Heterojunction Perovskite Solar Cells. Advanced Functional Materials 2014, 24
(1), 151-157.
43. Dualeh, A.; Tétreault, N.; Moehl, T.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M.,
Effect of Annealing Temperature on Film Morphology of Organic–Inorganic
Hybrid Pervoskite Solid-State Solar Cells. Advanced Functional Materials 2014,
24 (21), 3250-3258.
44. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I., Solvent
engineering for high-performance inorganic–organic hybrid perovskite solar cells.
Nat Mater 2014, 13 (9), 897-903.
45. Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A. J.; Gupta, G.; Crochet,
J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A.; Wang, H.-L.; Mohite, A. D.,
High-efficiency solution-processed perovskite solar cells with millimeter-scale
grains. Science 2015, 347 (6221), 522-525.
46. Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C.; Gao, Y.; Huang,
J., Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of
solution-processed precursor stacking layers. Energy & Environmental Science
2014, 7 (8), 2619-2623.
47. Xiao, Z.; Dong, Q.; Bi, C.; Shao, Y.; Yuan, Y.; Huang, J., Solvent Annealing of
Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency
Enhancement. Advanced Materials 2014, 26 (37), 6503-6509.
48. Li, G.; Ching, K. L.; Ho, J. Y. L.; Wong, M.; Kwok, H.-S., Identifying the
Optimum Morphology in High-Performance Perovskite Solar Cells. Advanced
Energy Materials 2015, 5 (9), n/a-n/a.
49. Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith,
H. J., Formamidinium lead trihalide: a broadly tunable perovskite for efficient
planar heterojunction solar cells. Energy & Environmental Science 2014, 7 (3),
982-988.
50. Pellet, N.; Gao, P.; Gregori, G.; Yang, T.-Y.; Nazeeruddin, M. K.; Maier, J.; Grätzel,
M., Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light
Harvesting. Angewandte Chemie International Edition 2014, 53 (12), 3151-3157.
51. Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.;
72
Haghighirad, A.-A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B.;
Petrozza, A.; Herz, L. M.; Snaith, H. J., Lead-free organic-inorganic tin halide
perovskites for photovoltaic applications. Energy & Environmental Science 2014, 7
(9), 3061-3068.
52. Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda,
T.; Yoshino, K.; Pandey, S. S.; Ma, T.; Hayase, S., CH3NH3SnxPb(1–x)I3
Perovskite Solar Cells Covering up to 1060 nm. The Journal of Physical Chemistry
Letters 2014, 5 (6), 1004-1011.
53. Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical Management
for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar
Cells. Nano Letters 2013, 13 (4), 1764-1769.
54. Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I.,
Compositional engineering of perovskite materials for high-performance solar cells.
Nature 2015, 517 (7535), 476-480.
55. Liang, P.-W.; Liao, C.-Y.; Chueh, C.-C.; Zuo, F.; Williams, S. T.; Xin, X.-K.; Lin, J.;
Jen, A. K. Y., Additive Enhanced Crystallization of Solution-Processed Perovskite
for Highly Efficient Planar-Heterojunction Solar Cells. Advanced Materials 2014,
26 (22), 3748-3754.
56. Lindblad, R.; Bi, D.; Park, B.-w.; Oscarsson, J.; Gorgoi, M.; Siegbahn, H.; Odelius,
M.; Johansson, E. M. J.; Rensmo, H., Electronic Structure of TiO2/CH3NH3PbI3
Perovskite Solar Cell Interfaces. The Journal of Physical Chemistry Letters 2014, 5
(4), 648-653.
57. Beckmann, P. A., A review of polytypism in lead iodide. Crystal Research and
Technology 2010, 45 (5), 455-460.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top