跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 20:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡順億
研究生(外文):Shun-Yi Jian
論文名稱:AZ系列鎂合金錳酸鹽化成皮膜結構與性質研究
論文名稱(外文):Microstructure and Properties of Permanganate Conversion Coating on AZ Series Magnesium Alloys
指導教授:林招松林招松引用關係
口試委員:莊東漢葛明德楊木榮陳貞光李岳聯
口試日期:2015-04-22
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:166
中文關鍵詞:錳酸鹽化成處理AZ31B鎂合金AZ91D鎂合金抗蝕性交流阻抗
外文關鍵詞:permanganate conversion coatingAZ31B magnesium alloysAZ91D magnesium alloyscorrosion resistanceEIS
相關次數:
  • 被引用被引用:3
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鎂合金具有優異的比強度和低密度,廣泛應用於輕量化的產品,包括3C殼件、自行車、汽車等。但鎂是極為活潑的元素(標準還原電位-2.37 V vs. SHE),因此鎂合金需要適當之防蝕處理;傳統的化成處理大量使用了六價鉻(致癌物質,RoHS指令已限制其使用),發展替代六價鉻化成處理製程技術實是刻不容緩。
本研究以AZ91D與AZ31B鎂合金作為研究底材,並選用業界進行表面處理時,常使用的錳酸鹽化成處理作一基礎性的討論。利用掃描式電子顯微鏡(SEM)及穿透式電子顯微鏡(TEM)執行微觀顯微結構,並以半定量成份分析(EDS)和擇區繞射分析皮膜成份,搭配化學分析電子光譜儀(ESCA)鑑定皮膜組成;以極化曲線、電化學阻抗頻譜(EIS)與鹽霧試驗分析皮膜抗蝕能力;另以百格試驗評估化成皮膜附著性及以Loresta歐姆計測量電阻率。
實驗項目共分為兩個部分,第一部分探討錳酸鹽化成皮膜之製程參數。研究結果顯示,過錳酸鉀溶液中添加磷酸鹽及硝酸錳的化成處理具有良好的抗蝕性與附著性,相較於傳統磷酸鹽/錳酸鹽化成皮膜,可大量抑制裂紋生成。主要藉由Guyard reation的作用,在鎂合金表面生成緻密的鈍化膜,其厚度約200~400nm,此化成皮膜由外至內為緻密層和多孔層,以Mg、O、Mn為主要組成。 
第二部分則針對AZ31B鎂合金經最佳參數鈍化後皮膜之腐蝕行為分析,實驗中以EIS進行長時間(48 h)量測及搭配微結構分析(SEM、TEM),進一步提出鈍化膜的腐蝕行為。此部分之研究,同時採用具有抗蝕表現之鉻酸鹽化成處理(Dow 1)作比較分析。由電化學性質量測及鹽霧試驗結果顯示,經最佳參數的錳酸鹽化成處理試樣,其耐蝕性已明顯獲得改善,但仍劣於鉻酸鹽化成皮膜,可能原因為鉻酸鹽化成皮膜具有自我癒合的能力。
本論文最後則針對錳酸鹽化成皮膜提出可能的成長機構。並探討雙相結構對化成皮膜成核的影響及化成溶液老化的問題。

With excellent specific strengh and low density, magnesium alloys are extensively used in light products, including electrical appliances, bicycles and automobiles. However, since magnesium is chemically reactive (standard reduction potential -2.37 V vs. SHE), surface conversion coating treatments are therefore indispensable for improving the corrosion resistance of magnesium alloys. Hexavalent chromium conversion treatment was widely used in conventional conversion coating treatment, but has been limited by RoHs due to its high toxicity. Thus, the development of alternatives to hexavalent chromium conversion coating treatment is now an urgent necessity.
In this study, AZ91D and AZ31B magnesium alloys were used as experimental materials. Meanwhile, permanganate coatings, which are widely used for surface treatment in industries, are adapted to have fundamental discussions. The surface morphology of the coating was investigated by scanning electron microscopy (SEM). The microstructure and thickness of the coating were characterized by cross-sectional transmission electron microscopy (TEM). The compositions of the coating were investigated by energy dispersive spectrometry (EDS) and x-ray photoelectron spectrometry (XPS). Moreover, the corrosion resistance of the coating was measured by polarization test, electrochemical impedance spectroscopy (EIS) and salt spray test (SST). The adhesion of the coating was measured by the tape adhesion test according to ASTM D3359-97 standard. Finally, the resistivity of the coating was measured by Loresta Meter.
The Experiments are divided into two parts. In the first section of the dissertation, an optimal preparation condition of permanganate conversion treatment is studied. The excellent properties of the permanganate conversion coating is obtained by adding phosphate (KH2PO4) and manganese nitrate (Mn(NO3)2) in the permanganate conversion solution. The Guyard reaction provides a new route to form a thin, nearly crack-free MnO2-rich conversion coating on magnesium alloys. The conversion coating exhibited a two-layered structure: a compact layer major overlay and a porous layer directly contacting with the substrates. Dense passive films were generated on the surface of the magnesium alloy with the interaction of MnO4-and Mn2+, which the thickness of about 200~400 nm and consist of the Mg, O, and Mn composition. Experiment results indicated that the coating formed on magnesium alloys may provide enhanced corrosion protection.
The second section of the dissertation investigated the properties of the optimal permanganate conversion coating proposed in the first section. Thus, with increasing immersion time (48 h), the coating’s lifetime would be definitely responded. Based on the EIS measurement, structure and composition analysis of the conversion coated AZ31 was proposed for understanding the corrosion process of passive film. With the form of the impedance spectrum could be determined the mechanism of the corrosion process. An acid chromate bath, Dow 1, was also used for comparison. The results of the electrochemical measurements and the salt spray tests demonstrate that the corrosion resistance of the AZ31 alloy has been markedly improved by the permanganate conversion treatment. However, the optimal permanganate conversion coating still has corrosion resistance inferior to the chromate (Dow 1) conversion coating. This is likely due to the unique self-healing capability of the chromate conversion coating.
The formation mechanism of permanganate conversion coating was discussed in detail, which emphasis on the evolution of the coating. Moreover, we discussed how the Mg17Al12 (β) phase affects the microstructure of the coating and the aging time of conversion solution.

目錄
口試委員會審定書 i
致謝 ii
中文摘要 iii
ABSTRACT v
目錄 viii
圖目錄 xiii
表目錄 xviii
第 1 章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 研究策略 2
第 2 章 文獻回顧 3
2.1 鎂合金的發展與應用 3
2.1.1 鎂與鎂合金的性質 3
2.1.2 鎂合金的性質與種類 3
2.2 鎂合金的腐蝕行為 6
2.3 鎂合金的表面處理 10
2.3.1 化成處理 10
2.3.2 陽極氧化處理 10
2.3.3 電鍍/無電鍍處理 11
2.3.4 物理氣相沉積法 11
2.4 化成處理的種類 12
2.4.1 鉻酸鹽化成處理 12
2.4.2 磷酸鹽化成處理 13
2.4.3 磷酸鹽/錳酸鹽化成處理 13
2.4.4 錫酸鹽化成處理 18
2.4.5 釩酸鹽化成處理 18
2.4.6 稀土金屬元素化成處理 19
第 3 章 實驗方法與步驟 20
3.1 製程說明 20
3.2 材料來源與分析 21
3.3 實驗流程 23
3.4 製程條件 25
3.4.1 錳酸鹽化成溶液 25
3.4.2 六價鉻化成溶液 25
3.5 化成皮膜微結構分析 27
3.5.1 掃描式電子顯微鏡觀察與分析 27
3.5.2 穿透式電子顯微鏡觀察與分析 27
3.5.3 X-ray 光電子能譜分析 29
3.6 化成皮膜抗蝕性評估 30
3.6.1 開路電位量測 30
3.6.2 極化曲線量測 30
3.6.3 交流阻抗分析 31
3.6.4 鹽霧試驗分析 33
3.7 化成皮膜附著性量測 36
3.8 化成皮膜導電度分析 38
第 4 章 實驗結果 39
◎ 第一部分:錳酸鹽化成皮膜製程參數之探討39
4.1 未添加磷酸鹽之化成皮膜 40
4.1.1 表面色澤觀察 40
4.1.2 SEM 表面形貌觀察 42
4.1.3 TEM 橫截面觀察 45
4.1.4 XPS化學能譜分析 50
4.1.5 極化曲線量測 52
4.1.6 交流阻抗分析 55
4.1.7 皮膜附著性量測 60
4.2 添加磷酸鹽之化成皮膜 61
4.2.1 表面色澤觀察 61
4.2.2 SEM 表面形貌觀察 63
4.2.3 TEM 橫截面觀察 66
4.2.4 XPS化學能譜分析 71
4.2.5 極化曲線量測 73
4.2.6 交流阻抗分析 76
4.2.7 皮膜附著性量測 79
4.2.8 皮膜導電度量測 79
4.2.9 添加磷酸鹽對化成皮膜之影響 80
4.3 硫酸錳替代硝酸錳之比較研究 81
4.3.1 表面色澤觀察 81
4.3.2 SEM 表面形貌觀察 83
4.3.3 TEM 橫截面觀察 86
4.3.4 極化曲線量測 89
4.3.5 交流阻抗分析 92
4.3.6 皮膜附著性量測 95
4.3.7 添加硝酸錳或硫酸錳對化成皮膜之影響 96
◎ 第二部分:錳酸鹽化成皮膜抗蝕性與腐蝕行為研究 97
4.4 六價鉻化成皮膜 98
4.4.1 SEM 表面形貌觀察 98
4.4.2 TEM 橫截面觀察 99
4.4.3 極化曲線量測 100
4.4.4 交流阻抗分析 101
4.5 抗蝕性分析 104
4.5.1 鹽霧試驗 104
4.5.2 長時間腐蝕行為探討 106
第 5 章 討論 134
5.1 化成時間對錳酸鹽化成皮膜微結構的影響 134
5.1.1 開路電位之量測 134
5.1.2 SEM 表面形貌觀察 135
5.1.3 TEM 橫截面觀察 138
5.1.4 交流阻抗分析 142
5.2 雙相(Dual-Phase)對化成皮膜成核的影響 143
5.3 反應機制探討 151
5.4 化成溶液老化之研究 153
第 6 章 結論 156
第 7 章 未來展望 158
參考文獻 159


[1]方思凱,「AZ31B 鎂合金之硝酸鈰化成處理」,台灣大學碩士論文,九三年七月。
[2]李威志,「AZ31B 鎂合金之磷酸鹽/過錳酸鹽化成皮膜微結構與成長機制探討」台灣大學碩士論文,九四年七月。
[3]蔡孟熹,「鎂鋁合金中Mg17Al12 對於磷酸鹽/錳酸鹽化成處理為結構與性質的影響」,台灣大學碩士論文,九六年七月。
[4]褚喻仁,「以pH 值探討AZ31B 鎂合金磷酸鹽/錳酸鹽化成皮膜成長特性」,台灣大學碩士論文,九七年七月。
[5]李偉任,「AZ31B 鎂合金硝酸鈰化成皮膜結構與性質研究」,台灣大學博士論文,九七年七月。
[6]黃揚皓,「酸洗前處理對AZ91D 鎂合金錫酸鹽化成皮膜微結構與性質的影響」,台灣大學碩士論文,九八年七月。
[7]李岳聯,「AZ91D 鎂合金非鉻型化成皮膜結構與性質研究」,台灣大學博士論文,一○○年七月。
[8]林高峰,「AM30鎂合金之錳酸鹽化成處理」,台灣大學碩士論文,一○二年七月。
[9]羅文昕,「釩酸根對AZ31B和AZ91鎂合金硝酸鈰化成皮膜結構與性質之影響」,台灣大學碩士論文,一○二年七月。
[10]J. E. Gray and B. Luan, Protective Coatings on Magnesium and Its Alloys – A Critical Review, J. Alloys Compd., Vol. 336, pp.88-113, 2002.
[11]Y. Kojima, Project of Platform Science and Technology for Advanced Magnesium Alloys, Mater. Trans., Vol. 42, pp.1154-1159, 2001.
[12]S. Mathieu, C. Rapin, J. hazan, P. Steinmetz, Corrosion behaviour of high pressure die-cast and semi-solid cast AZ91D alloys, Corros. Sci., Vol. 44, pp.2737-2756, 2002.
[13]楊智超,「輕量化新鎂合金材料之發展」,輕金屬特刊,pp.81-85,2003。
[14]B. L. Mordike, Developement of highly creep resistant magnesium alloys, J. Mater. Process. Technol., Vol. 117, pp.391-394, 2001.
[15]賴耿陽,「非鐵金屬材料」,輕金屬特刊,pp.81-85,2003。
[16]ASM, “Magnesium Alloys,” Metals Handbook 8th edition, Vol. 8, pp.314-319, 1976.
[17]戴光勇,「鎂合金表面處理技術(上) 」,材料與社會,24 期,1988。
[18]戴光勇,「鎂合金表面處理技術(下) 」,材料與社會,25 期,1989。
[19]王建義,「鎂合金之環保化」,工業材料,155 期,pp.125-130,2002。
[20]M. Avedesian and Hugh Baker, Magnesium and magnesium alloys, ASM Specialty Handbook.
[21]J. H. Nordlien and S. Ono, N. Masuko, Morphology and structure of oxide films formd on magnesium by exposure to air and water, J. Electrochem. Soc., Vol.142, no10, pp.3320, 1995.
[22]E. Ghali, W. Dietze and K. Kainer, General and localized corrosion of magnesium alloys: a critical review, J. Mater. Eng. Perform., Vol. 13(1), pp.7-23, 2004.
[23]M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous solution, NACE, 1974.
[24]Binary Alloy Phase Diagrams, American Society for Metals, Park, Ohin, 1986.
[25]G. Song, A. Atrens, X. Wu and B. Zhang, Corrosion behaviour of AZ21, AZ501, and AZ91 in Sodium Chloride, Corros. Sci., Vol.40, pp.1769-1791, 1998.
[26]S. Mathieu, C. Rapin, J. Steinmetz, P. Steinmetz, A corrosion of main constituent phases of AZ91D magnesium alloys, Corros. Sci., Vol.45, pp.2741-2755, 2003.
[27]楊金瑞、葉信宏,鎂合金表面處理簡介,工業材料,152 期,pp. 106,1999。
[28]G. E. Thompson, K. Shimizu and G. C. Wood, Observation of flaws in Anodic Films on Aluminum, Nat., Vol. 272, pp.471-472, 1980.
[29]The Dow Chemical Company, GB pat., 762, pp. 196, 1956.
[30]Y. Zhang, C. Yan, F.Wang, H. Lou and C. Cao, Study on the environmentally friendly anodizing of AZ91D magnesium alloy, Surf. Coat. Technol., Vol.161, pp.36-43, 2002.
[31]C. S. Lin and Y. C. Fu,Characterization of Anodic Films on AZ31B Magnesium Alloys in Alkaline Solutions Containing Fluoride and Phosphate Anions, J. Electrochem. Soc., Vol.153, pp.417-424, 2006.
[32]D. Crotty, C. Steinecker and B. Durkin, Plating Difficult Substrates with Electroless Nickel,”Prod. Finish., Vol.60, pp.44, 1996.
[33]A. Yamamoto, A. Watanabe, K. Sugahara, S. Fukumoto and H. Tsubakino, Deposition Coating of Magnesium Alloys with Pure Magnesium, Mater. Trans., Vol. 42, pp.1237-1242, 2001.
[34]C. H. Caceres, C. J. Davidson, J. R. Griffiths, C. L. Newton , Effects of solidification rate and ageing on the microstructure and mechanical proper AZ91 alloy, Mater. Sci. Eng., Vol. 325, pp.344-355, 2002.
[35]邱六合、林信安,「鎂合金腐蝕與表面處理」,輕金屬特刊, pp.118-124,2002。
[36]C. S. Lin, H. C. Lin, K. M. Lin, W. C. Lai Formation and properties of stannate conversion coating on AZ61 magnesium, Corros. Sci., Vol. 48, pp.93-109, 2006.
[37]A. Yu. Simaranov, A. I. Marshakov, Yu. N. Mikhailovskii, The Composition and Protective Properties of Chromate Conversion Coatings on Magnesium, UDC 620, 1976.
[38]A. K. Sharma,”Chromate Conversion Coatings for Magnesium-Lithium Alloys”, “Met. Finish”, pp.73-74, 1989.
[39]S. Ono, K. Asami and N. Masuko, Mechanism of Chemical Conversion Coating Film Growth on Magnesium and magnesium Alloys, Mater. Trans., Vol. 42, pp.1225-1231, 2001.
[40]F. W. Eppensteiner, M. R. Jenkins, Metal Finishing Guidebook and Directory, Vol. 90, pp.413, 1992.
[41]J. Honer, Chromate Post Treatments, Met. Finish., Vol. 88, No.2, pp.76, 1990.
[42]I. Azkarate, P. Cano, A. Del Barrio, M. Insausti, P. Santa Coloma, Alternatives to Cr(VI) conversion coating for magnesium pretreatment, International Congress Magnesium Alloys and their Applications, 2000.
[43]The RoHS Directive stands, “http://www.rohs.gov.uk/”.
[44]L. H. Chiu, H. A. Lin, C. C. Chen, C. C. Yang, C.H. Chang and J. C. Wu, Effect of Aluminum Coatings on Corrosion Properties of AZ31B Magnesium Alloy, Mater. Sci. Forum , Vol.13 419-422, pp.909-914, 2003.
[45]D. Hawke, D. L. Albright, A Phosphate-Permanganate Conversion Coating for Magnesium, Met. Finish., Vol.93, No.10, pp.34-38, 1995.
[46]H. Umehara, M. Takaya, Y. Kojima, An Investigation of the structure and Corrosion Resistance of Permanganate Conversion Coatings, Mater. Trans., Vol. 42, pp.1691-1699, 2001.
[47]H. Umehara, M. Takaya, and S. Terauchi, Surf. Coat. Technol., 169-170, pp.666-669, 2003.
[48]K. Z. Chong, and T. S. Shih, Mater. Chem. Phys., 80, pp.191-200, 2003.
[49]M. Zhao, S. Wu, J. Luo, Y. Fukuda, and H. Nakae, Surf. Coat. Technol., 200, pp.5407-5412, 2006.
[50]C. S. Lin, C. Y. Lee, W. C. Li, Y. S. Chen, and G. N. Fang, J. Electrochem. Soc., 153, pp.B90-B96, 2006.
[51]S. Natarajan and V. Ravikiran, Surf. Eng., 22, pp.287-293, 2006.
[52]F. Zucchi, A. Frignani, V. Grassi, G. Trabanelli, and C. Monticelli, Corros. Sci., 49, pp.4542-4552, 2007.
[53]H. Zhang, G. C. Yao, S. L. Wang, Y. H. Liu, and H. J. Luo, Surf. Coat. Technol., 202, pp.1825-1830, 2008.
[54]W. Zhou, D. Shan, E. H. Han and W. Ke, Corros. Sci., Vol.50, pp.329-337, 2008.
[55]A. A. Aal, J. Mater. Sci., 43, 2947-2954, 2008.
[56]E. Rocca , C. Juers, and J. Steinmetz, Corros. Sci., 52, pp.2172-2178, 2010.
[57]M. Mosialek, G. Mordarsku, P. Nowak, W. Simka, G, Nawrat, M. Hanke, R. P. Socha, and J. Michalska, Surf. Coat. Technol., 206, pp.51-62, 2011.
[58]W. Guixiang, Z. Milin, and W. Ruizhi, Appl. Surf. Sci., 258, pp.2648-2654, 2012.
[59]Y.L. Lee, Y.R. Chu, W.C. Li, and C.S. Lin, Corros. Sci., 70, pp.74-81, 2013.
[60]李玲莉、趙剛、朱麗葉、應麗霞、王桂香,稀有金属材料與工程,42(2),2013.
[61]農登、宋東福、戚文軍、梁濤、王海艷,稀有金属材料與工程,42(5) ,2013.
[62]A. S. Hamdy, and H. M. Hussien, Int. J. Electrochem. Sci., 8, pp.11386-11402, 2013.
[63]A. S. Hamdy, and H. M. Hussien, Int. J. Electrochem. Sci., 9, pp.2682-2695, 2014.
[64]M. A. Gonzalez-Nunez, P. Skeldon, G. E. Thompson, H. Karimzadeh, P. Lyon, T. E. Wilks, Corros. Sci., Vol. 55, pp.1136, 1999.
[65]H. Guan, R.G. Buchheit, Corrosion Protection of Aluminum Alloy 2024-T3 by Vanadate Conversion Coatings, Corros., Vol.60, pp.284, 2004.
[66]K. Yang, M. Ger, W. Hwu, Y. Sung and Y. Liu, Study of vanadium-based chemical conversion coating on the corrosion resistance of magnesium alloy, Mater. Chem. Phys., Vol.101, pp.480, 2007.
[67]A. L. Rudd, C. B. Bresline, F. Mansfeld, The Corrosion Protection Afforded by Rare Earth Conversion Coating Applied to Magnesium, Corros. Sci., Vol.42, pp.275, 2000.
[68]R. G. Buchheit, S. B. Mamidipally, P. Schmutz, Active Corrosion Protection in Ce-Modified Hydrotalcite Conversion Coatings, Corros. Sci., Vol.58, No. 1, pp.3-14, 2002.
[69]ASTM Standard, “Standard Specification for Magnesium-Alloy Sheet and Plate”, B90/B90M-07.
[70]ASTM Standard, “Standard Test Methods for Conducting Potentiodynamic Polarization Resistance Measurements”, G59-97.
[71]ASTM Standard, “Standard Practice for Operating Salt Spray (Fog) Apparatus”, B117-11.
[72]ASTM Standard, “Standard Practice for Evaluating Degree of Rusting on Painted Steel Surface”, D610-08.
[73]ASTM Standard, “Standard Test Methods for Measuring Adhesion by Tape Test”, D3359-02.
[74]F. Wong, R.G. Buchheit, Utilizing the Strutural Memory Effect of Layered Double Hydroxides for Sensing Water Uptake in Organic Caotings, Prog. Org. Coat., Vol.51, pp.91, 2004.
[75]N. T. Wen, C.S. Lin, C.Y. Bai, M.D. Ger, Structures and Characteristics of Cr(III)-Based Conversion Coatings on Electrogalvanized Steels, Surf. Coat. Technol., Vol.203, pp.317, 2008.
[76]U. Rammelt, G. Reinhard, The Influence of Surface Roughness on the Impedance Data for Iron Electrodes in Acid Solutions, Corros. Sci., Vol.27, pp.373, 1987.
[77]M. Keddam, H. Takenouti, Impedance of Fractal Interfaces:New Data on the Von Koch Model, Electrochim. Acta, Vol.33, pp.445, 1988.
[78]A. P. Borosy, L. Nyikos, T. Pajkossy, Diffusion to Fractal Surface-V. Quasi-Random Interface, Electrochim. Acta, Vol.36, pp.163, 1991.
[79]H. S. Ryu, J. Ryu, D. S. Park, and S. H. Hong, Electrochemical Corrosion Properties of Nanostructured YSZ Coated AZ31B Magnesium Alloy Prepared by Aerosol Deposition, J. Electrochem. Soc., Vol.158, pp.C23, 2011.
[80]P. Zoltowski, Effect of Self-Induced Mechanical Stress In Hydrogen Sorption by Metal, by EIS, Electrochim. Acta, Vol.44, pp.4415, 1999.
[81]. Chen, Y. Song, D. Shan, En-Hou Han, Corros. Sci., Vol.65, pp.268-277, 2012.
[82]G. Baril, Nadine, Corros. Sci., Vol.43, pp.471-484, 2001.
[83]Y. Zhang, C. Yan , F. Wang, W. Li, Corros. Sci., Vol.47, pp.2816-2831, 2005.
[84]Y. G. Ko, S. Namgung, D. H. Shin, Surf. Coat. Technol., Vol.205, pp.2525-2531, 2010.
[85]L. Li, Q. Qu, Z.Fang, L. Wang, Y. He, R. Yuan, Z. Ding, Int. J. Electrochem. Sci., Vol.7, pp.12690-12705, 2012.
[86]D. Seifzadeh, A. G. Haghighat, Indian J. Chem. Technol., Vol. 20, pp.210-216, 2013.
[87]M. F. Montemor, A. M. Simoes, and M. J. Carmezim, Appl. Surf. Sci., 253, pp.6922-6931, 2007.
[88]Y. C. Yang, C. Y. Tsai, Y. H. Huang, and C. S. Lin, J. Electrochem. Soc., 159, pp.C226-C232,2012.
[89]A.A.O. Magalhaes, B. Tribollet, O.R. Mattos, I.C.P. Margarit and O.E. Barcia, Chromate conversion coatings formation on zinc studied by electrochemical and electrohydrodynamical impedances, J. Electrochem. Soc. Vol. 150, no.1, pp.B16, 2003.
[90]X. Zhang, W.G. Sloof, A. Hovestad, E.P.M. VanWesting, H. Terryn and J.H.W. De Wit, Characterization of chromate conversion coatings on zinc using XPS and SKPFM, Surf. Coat. Technol. Vol.197, no.2-3, pp.168-176, 2005.
[91]N. M. Martyak, Internal stresses in zinc-chromate coatings, Surf. Coat. Technol. Vol. 88, no.1-3, pp.139-146, 1997.
[92]Z. L. Long, Y. C. Zhou and L. Xiao, Characterization of black chromate conversion coating on the electrodeposited zinc-iron alloy, Appl. Surf. Sci. Vol.218, no.1-4, pp.123-136, 2003.
[93]Skoog, A. Douglas, and M. W. Donald, Fundamentals of analytical chemistry. Vol. 599. New York: Holt, Rinehart and Winston, 1963.
[94]A. W. Adamson, The Kinetics of the Manganous–Permanganate Reaction. J. Phys. Chem., Vol.55, pp.293-303, 1951.
[95]Narita, Eiichi, and T. Okabe. Inhibition of catalytic decomposition of acid permanganate solutions. Industrial & Engineering Chemistry Product Research and Development 21.4, pp.662-666, 1982.
[96]Crimi, L. Michelle, and R. L. Siegrist. Impact of reaction conditions on MnO 2 genesis during permanganate oxidation. J. Environ. Eng., 130.5, pp.562-572, 2004.
[97]M. J. Polissar, The kinetics of the reaction between permanganate and manganous ions. J. Phys. Chem., 39.8, pp.1057-1066, 1935.
[98]R. S. Engelbrecht, Significance and Removal of Iron in Water Supplies, Fourth Annul Environmental Engineering and Water Resources, Vanderbit University, Nashville, TN, 1965.
[99]J. L. Peter, S. J. Kenneth, H. C. Kenneth, and A. E. Virginia, Oxidation Kinetics of Manganese( Ⅱ ) in Seawater at Nanomolar Concentrtions, Geochim. Cosmochm. Acta., Vol.61, pp.4945-4954, 1997.
[100]J.F. Perezbenito, and C, A. Arias, Kinetic-study of the permanganate oxidation of triethylamine-catalysis by soluble colloids, Int. J. Chem. Kinet., Vol.23, pp.717-732, 1991.
[101]J.F. Perezbenito, and C. Arias, A kinetic-study of the reaction between soluble (colloidal) manganese-dioxide and formic-acid, J. Colloid Interface Sci., Vol.149, pp.92-97, 1992.
[102]J.F. Perezbenito, and C. Arias, Occurrence of colloidal manganesedioxide in permanganate reactions, J. Colloid Interface Sci., Vol.152, pp.70-84, 1992.
[103]M.L. Crimi, and R.L Siegrist, Impact of reaction conditions on MnO2 genesis during permanganate oxidation, J. Environ. Eng., Vol.130, pp.562-572, 2004.
[104]A. Amirtharajah, and C.R. O’Melia, Coagulation processes:destabilization, mixing, and flocculation. Water Quality and Treatment, 4th ed. pp.269-365, 1990.
[105]W. Stumm, Chemistry of the solid-water interface:Processes at the mineral-water and particle-water interface in natural systems. John Wiley & Sons, Inc. New York, 1992.
[106]M. Orban, I. R. Epstein, J. Am. Chem. Soc, Vol.111, pp.8543-8544, 1989.
[107]K. A. Kova´cs, P. L. Burai, and M. Riedel, J. Phys. Chem. A, Vol.108, pp.11026-11031, 2004.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文