跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/02 21:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳志軒
研究生(外文):Chih-Hsuan Chen
論文名稱:TiNi基形狀記憶合金箔帶之性能以及R相自我調適行為之研究
論文名稱(外文):The Characteristics of Ribbons and the Self-accommodation of R-phase in TiNi-based Shape Memory Alloys
指導教授:吳錫侃
指導教授(外文):Shyi-Kaan Wu
口試委員:林新智胡塵滌周棟勝張世航
口試日期:2015-06-26
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:224
中文關鍵詞:鈦鎳形狀記憶合金箔帶析出硬化奈米壓痕GP區自我調適行為電子背向散射繞射
外文關鍵詞:TiNi Shape Memory AlloyRibbonPrecipitation HardeningNanoindentationGP zoneSelf-accommodationElectron Backscattering Diffraction (EBSD)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用快速凝固製程(RSP)製備富鈦鈦鎳形狀記憶合金箔帶(ribbon),並針對其麻田散體相變態、顯微結構、析出硬化以及形狀記憶特性進行探討。本研究所使用之試片包含Ti50.4Ni49.5Si0.1, Ti50.1Ni49.7Si0.2, Ti50.6Ni39.4Cu9.8Si0.2 and Ti50Ni25Cu25合金箔帶之性能。此外,本研究也包含高含鈦量之Ti50.92Ni48.94Si0.14箔帶中富鈦GP區(GP zone)析出物之顯微結構觀察。Ti50.4Ni49.5Si0.1及Ti50.1Ni49.7Si0.2此兩種合金箔帶於噴鑄狀態(as-spun)下包含大量奈米級Ti2Ni析出物,而經過500 ºC時效後皆產生未曾於塊材(bulk)富鈦鈦鎳形狀記憶合金中發現之R相相變態以及Ti3Ni4析出物。此奈米級Ti2Ni及Ti3Ni4析出物可有效產生析出硬化效果,強化箔帶之強度並且提升其形狀記憶特性。利用奈米壓痕超彈性試驗顯示Ti50.4Ni49.5Si0.1及Ti50.1Ni49.7Si0.2此兩種箔帶於50 mN之力量下皆有高於78 %之回復量,其性能較被報導的Ti49.8Ni50.2合金優異。Ti50.6Ni39.4Cu9.8Si0.2箔帶於噴鑄狀態僅部分結晶,其於550 ºC時結晶化並熱處理15分鐘後更可得到高達6.2%的形狀記憶效性回復量。Ti50Ni25Cu25箔帶於噴鑄狀態為非晶質,經過於500 ºC時結晶化並熱處理15分鐘後,由奈米壓痕超彈性測試可於2.5~3.0 GPa之平均壓力下達到最明顯之超彈性表現。由Ti50.92Ni48.94Si0.14箔帶中富鈦GP區析出物之顯微結構觀察,其結構為序化之C11b Ti2Ni以及Ti5Ni3兩次結構所組成,造成其繞射圖譜於0.4 q001及0.7 q001處有產生額外之繞射點。研究結果顯示利用RSP製成製造鈦鎳基形狀記憶合金薄帶可有效提升鈦鎳基形狀記憶合金之性能並得到優良的形狀記憶特性。透過利用電子背向散射繞射(EBSD)技術觀察R像自我調適行為(self-accommodation)提供更高解析度並且觀察不受晶粒方位所限制,可以更快速地分析R向自我調適之行為。

Characteristics of aging treatments, transformation sequence, phase identification, microstructures, precipitation hardening and shape memory performances of melt-spun Ti50.4Ni49.5Si0.1, Ti50.1Ni49.7Si0.2, Ti50.6Ni39.4Cu9.8Si0.2 and Ti50Ni25Cu25 ribbons were studied. Ti50.4Ni49.5Si0.1, Ti50.1Ni49.7Si0.2 and Ti50.6Ni39.4Cu9.8Si0.2 ribbons show significant precipitation hardening by GP zones and/or nanoscale Ti2Ni/Ti3Ni4 precipitates after aging treatment, which result in excellent shape memory performance. The recovery of both Ti50.4Ni49.5Si0.1 and Ti50.1Ni49.7Si0.2 ribbons during pseudoelasticity tests are higher than 78 % under nanoindentation load of 50 mN, which is significantly higher than conventional bulk Ti49.8Ni50.2 alloy. Additionally, the microstructure, precipitation phenomenon and shape memory properties of TiNiSi ribbons are found closely related to the slight variation of Ti/Ni ratio and Si content. For Ti50.6Ni39.4Cu9.8Si0.2 ribbon, shape memory effect with 6.2 % recoverable strain is obtained after crystallized and aged at 550 ºC for 15 min. Amorphous Ti50Ni25Cu25 ribbon becomes well-crystalized after being treated at 500 ºC for 15 min and shows pronounced pseudoelasticity response under average contact pressure between 2.5-3.0 GPa. The structure of GP zones in Ti-rich Ti50.92Ni48.94Si0.14 ribbon was studied and a hybrid structure composed of C11b Ti2Ni and Ti5Ni3 substructures is proposed to explain the appearance of these extra diffuse streaks. Experimental results indicate that performance of TiNi-based shape memory alloys can be effectively enhanced by fabricating the alloys with rapid solidification process. The self-accommodation morphologies of R-phase variants studied by an EBSD system provide a fast and high resolution method to study twinning relationship between R-phase variants.

Abstract i
摘要 iii
Content v
Chapter 1
Introduction 1
Chapter 2
Literature Review 5
2-1 TiNi-based Shape Memory Alloys 5
2-2 Phase Transformation Sequence in TiNi binary SMAs 7
2-2-1 One-stage Phase Transformation 7
2-2-2 Two-stage Phase Transformation 8
2-2-3 Multi-stage Phase Transformation 8
2-2-4 Adjustment of Transformation Temperatures 11
2-3 Shape Memory Effect (SME) 12
2-4 Pseudoelasticity (PE) 13
2-5 Rapid Solidification Process 14
2-6 Ti-rich Precipitates in Ti-Ni SMAs 17
2-6-1 Bulk Ti-rich TiNi SMAs Prepared by VAR 17
2-6-2 Ti-rich TiNi SMAs Thin Films Prepared by Sputtering 17
2-6-3 Ti-rich TiNi SMAs Ribbons Prepared by RSP 20
2-7 Nanoindentation Test 21
2-7-1 Origin of Nanoindentation 21
2-7-2 Nanoindenter 22
2-7-3 Analytical Model of Nanoindentation 23
2-7-4 Application of Nanoindention in SMAs 27
2-8 Observations of Self-accommodated R-phase Morphologies and The Crystallography of Trigonal R-phase 31
Chapter 3
Experimental Procedures 69
3-1 For The Properties of TiNi-based Ribbons 69
3-1-1 Preparation of Ribbons 69
3-1-2 Aging Treatment 69
3-1-3 Differential Scanning Calorimetry (DSC) Tests 70
3-1-4 SEM Observations 70
3-1-5 TEM Observations 71
3-1-6 X-ray Diffraction Spectra 71
3-1-7 SME Tests 71
3-1-8 Nanoindentation Hardness 72
3-1-9 Nanoindentation PE Tests 73
3-2 For The EBSD Observations of R-phase 73
3-2-1 Specimen Preparation 73
3-2-2 SEM and EBSD Apparatus 74
Chapter 4
Characteristics of TiNi-based Ribbons 81
4-1 Precipitation Hardening of Ti-rich Ti50.4Ni49.5Si0.1 Shape Memory Ribbons 81
4-1-1 DSC Results 81
4-1-2 XRD Results 83
4-1-3 Nanoindentation Hardness Measurements 83
4-1-4 TEM Observations 85
4-1-5 The SME and PE Properties of Aged Ti50.4Ni49.5Si0.1 Ribbons 87
4.1.6 Discussion of the Precipitation Hardening of Aged Ti50.4Ni49.5Si0.1 Ribbons 90
4-2 Properties of Aged Ti50.1Ni49.7Si0.2 Shape Memory Ribbons 91
4-2-1 DSC Results 91
4-2-2 TEM Microstructural Observations 93
4-2-3 Nanoindentation Hardness Measurement 94
4-2-4 Pseudoelasticity 95
4-2-5 The Effect of Composition on The Properties of TiNi Ribbons 97
4-3 The Characteristics of Precipitation Hardening and the Shape Memory Effect in Aged Ti50.6Ni39.4Cu9.8Si0.2 Shape Memory Ribbons 102
4-3-1 As-spun Ti50.6Ni39.4Cu9.8Si0.2 ribbon 102
4-3-2 Aged Ti50.6Ni39.4Cu9.8Si0.2 Ribbons 103
4-3-3 Nanoindentation Hardness Measurement 106
4-3-4 TEM Microstructure Observations 108
4-3-5 Shape Memory Effect (SME) 111
4-4 Pseudoelasticity Response of Aged Ti50Ni25Cu25 Shape Memory Ribbon under Nanoindentation Tests 115
4-4-1 Transformation behavior of aged Ti50Ni25Cu25 ribbons 115
4-4-2 Nanoindentation hardness 118
4-4-3 Pseudoelasticity 119
4-5 A Study of the Structure of GP Zones in Ti-rich TiNi Shape Memory Melt-spun Ribbons 127
4-5-1 Experimental Results 127
4-5-2 The Reported BCT Structure for GP zones 130
4-5-3 A Hybrid Structure for the GP zones Composed of Ordered C11b Ti2Ni and Ti5Ni3 Substructures 131
4-5-4 The Influence of Local Point Defects 134
Chapter 5
Observations of Self-accommodated R-phase in a Ti50.3Ni48.2Fe1.5 Shape Memory Alloy by SEM-EBSD System 175
5-1 Transformation Behavior of Ti50.3Ni48.2Fe1.5 SMA 175
5-2 Observations of R-phase Morphologies 175
5-3 Indexing Kikuchi Patterns and Determining Plane Traces 178
5-4 Herring-bone Morphology Formed by Four R-phase Variants 180
5-5 River-like Morphology 182
5-6 Vertical Stripe-type Morphology Formed by Two R-phase Variants 183
5-7 Intersection of a Stripe-type and a Large-angle Herring-bone Morphologies 184
5-8 Self-accommodation Morphology at the Grain Boundary 186
Chapter 6
Conclusions 199
6-1 Characteristics of TiNi-based Shape Memory Ribbons 199
6-2 Structure of GP zones in Ti-rich TiNi Shape Memory Ribbons 204
6-3 Self-accommodation Morphologies of Trigonal R-phase 204
References 207
Publications 221


[1] Wasilews.Rj, S.R. Butler, J.E. Hanlon, D. Worden, Metall. Trans., 2 (1971) 229.
[2] K. Otsuka, X. Ren, Prog. Mater. Sci., 50 (2005) 511.
[3] M. Nishida, C.M. Wayman, T. Honma, Metall. Trans. A, 17 (1986) 1505.
[4] K. Otsuka, T. Sawamura, K. Shimizu, C.M. Wayman, Metall. Trans., 2 (1971) 2583.
[5] K. Otsuka, T. Sawamura, K. Shimizu, Phys. Status Solidi A, 5 (1971) 457.
[6] R.F. Hehemann, G.D. Sandrock, Scripta Metall. Mater., 5 (1971) 801.
[7] G.D. Sandrock, A.J. Perkins, R.F. Hehemann, Metall. Trans., 2 (1971) 2769.
[8] G.M. Michal, R. Sinclair, Acta Crystallogr. B, 37 (1981) 1803.
[9] W. Buhrer, R. Gotthardt, A. Kulik, O. Mercier, F. Staub, J. Phys. F: Met. Phys., 13 (1983) L77.
[10] Y. Kudoh, M. Tokonami, S. Miyazaki, K. Otsuka, Acta Metall., 33 (1985) 2049.
[11] S. Miyazaki, K. Otsuka, C.M. Wayman, Acta Metall., 37 (1989) 1873.
[12] S. Miyazaki, K. Otsuka, C.M. Wayman, Acta Metall., 37 (1989) 1885.
[13] S. Miyazaki, K. Otsuka, C.M. Wayman, ISIJ Int''l, 29 (1989) 423.
[14] P. Krulevitch, A.P. Lee, P.B. Ramsey, J.C. Trevino, J. Hamilton, M.A. Northrup, J. Microelectromech. Syst., 5 (1996) 270.
[15] A. Ishida, K. Ogawa, M. Sato, S. Miyazaki, Metall. Mater. Trans. A, 28 (1997) 1985.
[16] A. Ishida, M. Sate, A. Takei, S. Miyazaki, Mater. Trans. JIM, 36 (1995) 1349.
[17] S. Kajiwara, T. Kikuchi, K. Ogawa, T. Matsunaga, S. Miyazaki, Phil. Mag. Lett., 74 (1996) 137.
[18] S. Kajiwara, K. Ogawa, T. Kikuchi, T. Matsunaga, S. Miyazaki, Phil. Mag. Lett., 74 (1996) 395.
[19] J.X. Zhang, M. Sato, A. Ishida, Acta Mater., 49 (2001) 3001.
[20] J.X. Zhang, M. Sato, A. Ishida, Phil. Mag. Lett., 82 (2002) 257.
[21] J.X. Zhang, M. Sato, A. Ishida, Acta Mater., 51 (2003) 3121.
[22] S. Miyazaki, A. Ishida, Mater. Sci. Eng. A, 273 (1999) 106.
[23] Y. Furuya, M. Matsumoto, H.S. Kimura, T. Masumoto, Mater. Sci. Eng. A, 147 (1991) L7.
[24] Y. Liu, Z.L. Xie, Y.X. Tong, C.W. Lim, J. Alloys Compd0, 416 (2006) 188.
[25] J. Morgiel, E. Cesari, J. Pons, A. Pasko, J. Dutkiewicz, J. Mater. Sci., 37 (2002) 5319.
[26] T.H. Nam, J.H. Lee, K.W. Kim, H.J. Ahn, Y.W. Kim, J. Mater. Sci., 40 (2005) 4925.
[27] S.H. Chang, S.K. Wu, H. Kimura, Mater. Trans., 47 (2006) 2489.
[28] A.V. Shelyakov, N.N. Sitnikov, A.P. Menushenkov, A.A. Korneev, R.N. Rizakhanov, N.A. Sokolova, J. Alloys Compd., 577S (2013) S251.
[29] J.H. Lee, T.H. Nam, H.J. Ahn, Y.W. Kim, Mater. Sci. Eng. A, 438 (2006) 691.
[30] T.H. Nam, J.H. Lee, J.M. Nam, K.W. Kim, G.B. Cho, Y.W. Kim, Mater. Sci. Eng. A, 483-84 (2008) 460.
[31] Y. Tong, Y. Liu, J. Alloys Compd., 449 (2008) 152.
[32] S.H. Chang, S.K. Wu, H. Kimura, Mater. Sci. Eng. A, 476 (2008) 316.
[33] Z.L. Xie, G.P. Cheng, Y. Liu, Acta Mater., 55 (2007) 361.
[34] Alexander Shelyakov, Nikolay Sitnikov, Sergey Saakyan, Alexey Menushenkov, Razhudin Rizakhanov, A. Korneev, Mater. Sci. Forum, 738-739 (2013) 352.
[35] Y.X. Tong, Y. Liu, Mater. Chem. Phys., 120 (2010) 221.
[36] A.V. Shelyakov, N.N. Sitnikov , V.V. Koledov , D.S. Kuchin , A.I. Irzhak, N.Y. Tabachkova, Int''l J. Smart and Nano Mater., 2 (2011) 68.
[37] A.V. Shelyakov, N.N. Sitnikov, A.P. Menushenkov, V.V. Koledov, A.I. Irjak, Thin Solid Films, 519 (2011) 5314.
[38] G.P. Cheng, Z.L. Xie, J. Alloys Compd., 396 (2005) 128.
[39] S.H. Chang, S.K. Wu, L.M. Wu, Intermetallics, 18 (2010) 965.
[40] C.H. Chen, S.K. Wu, Mater. Sci. Eng. A, 593 (2014) 85.
[41] S.H. Chang, S.K. Wu, H. Kimura, Intermetallics, 15 (2007) 233.
[42] J. Frenzel, E.P. George, A. Dlouhy, C. Somsen, M.F.X. Wagner, G. Eggeler, Acta Mater., 58 (2010) 3444.
[43] K. Otsuka, T. Kakeshita, MRS Bull., 27 (2002) 91.
[44] O.H. Massalski TB, Subramanian PR, Kacprzak L, editors., ASM International, 3 (1990) 2874.
[45] S. Miyazaki, S. Kimura, K. Otsuka, Philos. Mag. A, 57 (1988) 467.
[46] H. T., PhD thesis, University of Tsukuba, (1997) 31.
[47] F. Laves, Kristallographie der Legierungen 27 (1939) 65.
[48] P. Duwez, J.L. Taylor, Trans. AIME, 188 (1950) 1173.
[49] G.A. Yurko, J.W. Barton, J.G. Parr, Acta Crystallogr., 12 (1959) 909.
[50] J. Khalil-Allafi, A. Dlouhy, G. Eggeler, Acta Mater., 50 (2002) 4255.
[51] D.Q. Xue, Y.M. Zhou, X.B. Ren, Intermetallics, 19 (2011) 1752.
[52] V. Pelosin, A. Riviere, Metall. Mater. Trans. A, 29 (1998) 1175.
[53] N. Resnina, S. Belyaev, J. Alloys Compd., 486 (2009) 304.
[54] S. Miyazaki, Y. Ohmi, K. Otsuka, Y. Suzuki, J. Phys. Paris, 43 (1982) 255.
[55] H.C. Lin, S.K. Wu, Metall. Trans. A, 24 (1993) 293.
[56] C.M. Hwang, M. Meichle, M.B. Salamon, C.M. Wayman, Philos. Mag. A, 47 (1983) 9.
[57] C.M. Hwang, M. Meichle, M.B. Salamon, C.M. Wayman, Philos. Mag. A, 47 (1983) 31.
[58] C.M. Hwang, M.B. Salamon, C.M. Wayman, Philos. Mag. A, 47 (1983) 177.
[59] K.N. Melton, T. Duerig, J.L. Proft, MRS Int’l Mtg. On Adv. Mats. 9 (1989) 159.
[60] N.G. Jones, S.L. Raghunathan, D. Dye, Metall. Mater. Trans. A, 41A (2010) 912.
[61] P.L. Potapov, S.E. Kulkova, A.V. Shelyakov, K. Okutsu, S. Miyazaki, D. Schryvers, J. Phys. IV, 112 (2003) 727.
[62] B. Ramachandran, R.C. Tang, P.C. Chang, Y.K. Kuo, C. Chien, S.K. Wu, J. Appl. Phys., 113 (2013) 203702.
[63] Y.Y. Teng, S.L. Zhu, F.H. Wang, W.T. Wu, Physica B, 393 (2007) 18.
[64] 陳志軒, 國科會大專學生參與研究專題計畫, (2009) 61.
[65] L. Bataillard, J.E. Bidaux, R. Gotthard, Philos. Mag. A, 78 (1998) 327.
[66] A. Dlouhy, J. Khalil-Allafi, G. Eggeler, Philos. Mag., 83 (2003) 339.
[67] G.L. Fan, W. Chen, S. Yang, J.H. Zhu, X.B. Ren, K. Otsuka, Acta Mater., 52 (2004) 4351.
[68] G. Fan, Y. Zhou, W. Chen, S. Yang, X. Ren, K. Otsuka, Mater Sci. Eng. A, 438 (2006) 622.
[69] D. Chrobak, D. Stroz, H. Morawiec, Scripta Mater., 48 (2003) 571.
[70] P.C. Su, S.K. Wu, Acta Mater., 52 (2004) 1117.
[71] Y.N. Liu, X. Chen, P.G. McCormick, J. Mater. Sci., 32 (1997) 5979.
[72] L. Bataillard, R. Gotthardt, J. Phys. IV, 5 (1995) 647.
[73] M.C. Carroll, C. Somsen, G. Eggeler, Scripta Mater., 50 (2004) 187.
[74] J.K. Allafi, X. Ren, G. Eggeler, Acta Mater., 50 (2002) 793.
[75] J. Michutta, C. Somsen, A. Yawny, A. Dlouhy, G. Eggeler, Acta Mater., 54 (2006) 3525.
[76] K.H. Eckelmeyer, Scripta Metall. Mater., 10 (1976) 667.
[77] J.E. Hanlon, S.R. Butler, R.J. Wasilewski, Trans. Metall. Soc. AIME, 239 (1967) 1323.
[78] K.S. Otsuka, K., Int''l Metals Review, 31 (1986) 93.
[79] T. Saburi, T. Tatsumi, S. Nenno, J. De Phys., 43 (1982) 261.
[80] M. Nishida, C.M. Wayman, Metallography, 21 (1988) 255.
[81] M. Nishida, C.M. Wayman, A. Chiba, Metallography, 21 (1988) 275.
[82] T. Tadaki, Y. Nakata, K. Shimizu, Trans. JIM, 28 (1987) 883.
[83] S. Miyazaki, Y. Igo, K. Otsuka, Acta Metall., 34 (1986) 2045.
[84] C.M. Hwang, C.M. Wayman, Scripta Metall. Mater., 17 (1983) 381.
[85] H.C. Lin, S.K. Wu, T.S. Chou, H.P. Kao, Acta Metall. Mater., 39 (1991) 2069.
[86] S.H. Chang, S.K. Wu, G.H. Chang, Scripta Mater., 52 (2005) 1341.
[87] R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd ed. PWS-Kent, Boston, 1992.
[88] C.M. Wayman, Met. Forum, 4 (1981) 135.
[89] T.A. Schroeder, C.M. Wayman, Acta Metall., 27 (1979) 405.
[90] S.E. P. Donner, Mater. Sci. Forum, 56-58 (1991) 723.
[91] A.G. Gillen, B. Cantor, Acta Metall., 33 (1985) 1813.
[92] Y.W. Kim, T.H. Nam, Scripta Mater., 51 (2004) 653.
[93] W.B.d.C. Geroge C. S. Anselmo, Carlos J. de Araújo, Mater. Sci. Appl., 2 (2011) 1256.
[94] R. Nagarajan, K. Chattopadhyay, Acta Metall. Mater., 42 (1994) 947.
[95] H.Y.K.a.S.M. Hongyan Xing, Mater. Sci. Forum, 561-565 (2007) 1481.
[96] G.P. Cheng, Z.L. Xie, Y. Liu, J. Alloys Compd., 415 (2006) 182.
[97] J.R. Williams, H. Gong, N. Hoff, O.I. Olubodun, P.J. Carroll, Org. Lett., 6 (2004) 269.
[98] K.H. Chang, S.K. Wu, S.H. Chang, Thin Solid Films, 519 (2011) 5302.
[99] M. Sato, A. Ishida, S. Miyazaki, Thin Solid Films, 315 (1998) 305.
[100] Y. Nakata, T. Tadaki, H. Sakamoto, A. Tanaka, K. Shimizu, J. Phys. IV, 5 (1995) 671.
[101] A. Ishida, J.X. Zhang, J. Phys. IV, 112 (2003) 849.
[102] K.N. Lin, S.K. Wu, J. Alloys Compd., 424 (2006) 171.
[103] S.H. Chang, T.H. Chen, S.K. Wu, K.N. Lin, Phys. Scripta, T139 (2010) 014012.
[104] T.H. Nam, J.H. Kim, M.S. Choi, Y.W. Kim, H.J. Im, J.S. Ahn, T. Mitani, J. Mater. Sci. Lett., 21 (2002) 685.
[105] L.M. Wu, S.H. Chang, S.K. Wu, J. Alloys Compd., 505 (2010) 76.
[106] L.M. Wu, S.K. Wu, Phil. Mag. Lett., 90 (2010) 261.
[107] M.F. Doerner and W.D. Nix, J. Mater. Res., 1 (1986) 601.
[108] W.D. Nix, Metall. Trans. A, 20 (1989) 2217.
[109] J.L. Loubet, J.M. Georges, O. Marchesini, G. Meille, J. Tribol-T ASME, 106 (1984) 43.
[110] I. Sneddon, Int''l J. Eng. Sci., 3 (1965) 47.
[111] R.B. King, T.C. Osullivan, Int''l J. Solids Struct., 23 (1987) 581.
[112] P. E. Wierenga, A. J. J. Franken, Philips technical review, 42 (1985) 85.
[113] W.C. Oliver, G.M. Pharr, J. Mater. Res., 7 (1992) 1564.
[114] J.W. Harding and I.N. Sneddon, Proc. Cambridge Philos. Soc, 41 (1945) 16.
[115] C. Liu, Y.P. Zhao, Q.P. Sun, T.X. Yu, Z.X. Cao, J. Mater. Sci., 40 (2005) 1501.
[116] H.S. Zhang, K. Komvopoulos, J. Mater. Sci., 41 (2006) 5021.
[117] K. Sekido, T. Ohmura, T. Sawaguchi, M. Koyama, H.W. Park, K. Tsuzaki, Scripta Mater., 65 (2011) 942.
[118] A.J. Clarke, R.D. Field, P.O. Dickerson, R.J. McCabe, J.G. Swadener, R.E. Hackenberg, D.J. Thoma, Scripta Mater., 60 (2009) 890.
[119] X.G. Ma, K. Komvopoulos, Appl. Phys. Lett., 83 (2003) 3773.
[120] K. Komvopoulos, X.G. Ma, Appl. Phys. Lett., 87 (2005) 263108.
[121] X.G. Ma, K. Komvopoulos, Appl. Phys. Lett., 84 (2004) 4274.
[122] X.G. Ma, K. Komvopoulos, J. Mater. Res., 20 (2005) 1808.
[123] A. J. Muir Wood, J.H. You, T. W. Clyne, Proc. of SPIE, 5648 (2004) 216.
[124] A.J.M. Wood, T.W. Clyne, Acta Mater., 54 (2006) 5607.
[125] A.J.M. Wood, S. Sanjabi, Y.Q. Fu, Z.H. Barber, T.W. Clyne, Surf. Coat. Tech., 202 (2008) 3115.
[126] J. Pfetzing, A. Schaefer, C. Somsen, M.F.X. Wagner, Int''l J. Mater. Res., 100 (2009) 936.
[127] H.X. Zheng, J. Pfetzing, J. Frenzel, G. Eggeler, Int''l J. Mater. Res., 100 (2009) 594.
[128] H. Zheng, J.C. Rao, J. Pfetzing, J. Frenzel, C. Somsen, G. Eggeler, Scripta Mater., 58 (2008) 743.
[129] K. Otsuka, C.M. Wayman, Shape Memory Materials, Cambridge University Press, 1998.
[130] T. Fukuda, T. Saburi, K. Doi, S. Nenno, Mater. Trans. JIM, 33 (1992) 271.
[131] Y. Murakami, K. Otsuka, S. Hanada, S. Watanabe, Mater. Trans. JIM, 33 (1992) 282.
[132] Y. Murakami, T. Ohba, K. Morii, S. Aoki, K. Otsuka, Acta Mater., 55 (2007) 3203.
[133] M. Nishida, T. Nishiura, H. Kawano, T. Inamura, Philos. Mag., 92 (2012) 2215.
[134] S.C. Mao, X.D. Han, J.F. Luo, Z. Zhang, Mater. Lett., 59 (2005) 3567.
[135] J.F. Luo, S.C. Mao, X.D. Han, Z. Zhang, J. Wu, M.H. Wu, J. Appl. Phys., 102 (2007) 043526.
[136] D.J. Prior, P.W. Trimby, U.D. Weber, D.J. Dingley, Mineral. Mag., 60 (1996) 859.
[137] A.J. Wilkinson, P.B. Hirsch, Micron, 28 (1997) 279.
[138] C. Trager-Cowan, F. Sweeney, P.W. Trimby, A.P. Day, A. Gholinia, N.H. Schmidt, P.J. Parbrook, A.J. Wilkinson, I.M. Watson, Phys. Rev. B, 75 (2007) 085301.
[139] Y.N. Picard, M.E. Twigg, J.D. Caldwell, C.R. Eddy, P.G. Neudeck, A.J. Trunek, J.A. Powell, J. Electron. Mater., 37 (2008) 691.
[140] A.P. Boyle, D.J. Prior, M.H. Banham, N.E. Timms, Miner. Deposita, 34 (1998) 71.
[141] C. Franke, G.M. Pennock, M.R. Drury, R. Engelmann, D. Lattard, J.F.L. Garming, T. von Dobeneck, M.J. DekkerS, Geophys. J. Int''l, 170 (2007) 545.
[142] K. Freitag, A.P. Boyle, E. Nelson, M. Hitzman, J. Churchill, M. Lopez-Pedrosa, Miner. Deposita, 39 (2004) 103.
[143] P.W. Trimby, D.J. Prior, Tectonophysics, 303 (1999) 71.
[144] G.G.E. Seward, S. Celotto, D.J. Prior, J. Wheeler, R.C. Pond, Acta Mater., 52 (2004) 821.
[145] D. Schryvers, P.L. Potapov, Mater. Trans., 43 (2002) 774.
[146] D. Schryvers, P.L. Potapov, J. Phys. IV, 112 (2003) 751.
[147] H. Sitepu, Textures and Microstructures, 35 (2003) 185.
[148] H. Sitepu, H.G. Brokmeier, D. Chateigner, J.P. Wright, Sol. Stat. Phen., 105 (2005) 139.
[149] S.K. Wu, C.M. Wayman, Acta Metall. Mater., 37 (1989) 28053.
[150] K. Otsuka, Ren, X., Prog. Mater. Sci., 50 (2005) 511.
[151] S. Miyazaki, C.M. Wayman, Acta Metal.l Mater., 36 (1988) 181.
[152] Y.Q. Fu, S. Zhang, M.J. Wu, W.M. Huang, H.J. Du, J.K. Luo, A.J. Flewitt, W.I. Milne, Thin Solid Films, 515 (2006) 80.
[153] W. Tirry, D. Schryvers, K. Jorissen, D. Lamoen, Acta Crystallogr. B, 62 (2006) 966.
[154] T. Tadaki, Y. Nakata, K. Shimizu, K. Otsuka, Trans. JIM, 27 (1986) 731.
[155] A.M. Handbooks, Binary Alloy Phase Diagrams, 2nd ed., ASM International, Ohio, 1990.
[156] H. Funakubo, Shape memory alloys, Gordon and Breach Science Publishers, New York, 1987.
[157] J. M. Silcock, T. J. Heal, and H. K. Hardy, J. Inst. Met., 82 (1953-54) 239.
[158] A. Deschamps, F. Livet, Y. Brechet, Acta Mater., 47 (1998) 281.
[159] C.H. Chen, S.Y. Cheng, S.K. Wu, Intermetallics, 36 (2013) 109.
[160] K.H. Chang, S.K. Wu, S.H. Chang, Thin Solid Films, 519 (2011) 5302.
[161] A. Ishida, M. Sato, Philos. Mag., 87 (2007) 5523.
[162] A. Ishida, M. Sato, K. Ogawa, Philos. Mag., 88 (2008) 2427.
[163] T.H. Nam, T. Saburi, K. Shimizu, Mater. Trans. JIM, 31 (1990) 959.
[164] Y.C. Lo, S.K. Wu, H.E. Horng, Acta Metall. Mater., 41 (1993) 747.
[165] C.A. Schuh, T.G. Nieh, Acta Mater., 51 (2003) 87.
[166] A. Ishida, M. Sato, K. Ogawa, Phil. Mag. Lett., 86 (2006) 13.
[167] D.V. Louzguine, A. Inoue, J. Mater. Sci., 35 (2000) 4159.
[168] Y.X. Tong, Y. Liu, Z.L. Xie, M. Zarinejad, Acta Mater., 56 (2008) 1721.
[169] H. Rosner, P. Schlossmacher, A.V. Shelyakov, A.M. Glezer, Acta Mater., 49 (2001) 1541.
[170] C.H. Chen, S.K. Wu, C.Y. Lai, Mater. Sci. Eng. A, 613 (2014) 317.
[171] R. Liu, D.Y. Li, Y.S. Xie, R. Llewellyn, H.M. Hawthorne, Scripta Mater., 41 (1999) 691.
[172] W.Y. Ni, Y.T. Cheng, D.S. Grummon, Appl. Phys. Lett., 82 (2003) 2811.
[173] A.C. Fischer-Cripps, Nanoindentation, 3rd ed., Springer, 2011.
[174] C.Y. Nien, H.K. Wang, C.H. Chen, S. Ii, S.K. Wu, C.H. Hsueh, J. Mater. Res., 29 (2014) 2717.
[175] C.P. Frick, T.W. Lang, K. Spark, K. Gall, Acta Mater., 54 (2006) 2223.
[176] H. Sehitoglu, I. Karaman, X. Zhang, H. Kim, Y. Chumlyakov, H.J. Maier, I. Kireeva, Metall. Mater. Trans. A, 32 (2001) 477.
[177] D. Tabor, J. Inst. Met., 79 (1951) 1.
[178] M.A. Krivoglaz, Theory of X-ray and Thermal-Neutron Scattering by Real Crystals, Plenum Press, New York, 1969.
[179] M.I. Solovyova, D.M. Shtern, É.V. Kozlov, Russian Phys. J., 45 (2002) 372.
[180] M.I. Solovyova, D.M. Shtern, É.V. Kozlov, Russian Phys. J., 45 (2002) 365.
[181] J. Bernardini, C. Lexcellent, L. Daróczi, D.L. Beke, Philo. Mag., 83 (2003) 329.
[182] P. Donner, R. Würschum, E. Hornbogen and H. E. Schaefer, Scr. Metall. Mater., 25 (1991) 1875.
[183] X.B. Ren, K. Otsuka, Philos. Mag. A, 80 (2000) 467.
[184] S.I. Wright, M.M. Nowell, Microsc. Microanal., 12 (2006) 72.
[185] D.J. Dingley, D.P. Field, Mater. Sci. Tech. Ser., 13 (1997) 69.
[186] H.J. Bunge, Texture Analysis in Materials Science: Mathematical Methods, Cuvillier Press, 1993.
[187] D.Y. Cong, Y.D. Zhang, Y.D. Wang, C. Esling, X. Zhao, L. Zuo, J. Appl. Crystallogr., 39 (2006) 723.
[188] S.C. Mao, J.F. Luo, Z. Zhang, M.H. Wu, Y. Liu, X.D. Han, Acta Mater., 58 (2010) 3357.
[189] S.C. Mao, X.D. Han, Y.B. Tian, J.F. Luo, Z. Zhang, Y. Ji, M.H. Wu, Mat. Sci. Eng. A, 498 (2008) 278.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 1、王立達,我國行政調查制度之法制化,憲政時代第24卷第4期,1999年4月。
2. 2、李震山,「正當法律程序」被當真嗎?月旦法學教室第34期,2005年8月。
3. 3、李憲人,犯罪偵查諸原則於行政警察活動適用問題之研究,中央警察大學警政論叢第6期,2006年12月。
4. 6、林鈺雄,論刑事訴訟之目的,政大法學評論第61期,1999年6月。
5. 11、林裕順,偵查階段供述證據保全的法理探討-以刑事訴訟法第一五八之二第二項為中心,月旦法學雜誌第149期,2007年10月。
6. 12、林裕順,論司法警察於刑事偵查程序中應有的定位-日本刑事訴訟法制上的思考,月旦法學雜誌第74期,2001年7月。
7. 13、林士毓,陸軍部隊軍法警察權之探討,國防雜誌18卷18期,2003年12月。
8. 14、林士毓,陸軍部隊刑事犯罪偵查之研究,陸軍學術雙月刊第43卷第494期,2007年8月。
9. 15、周宗憲譯,曾和俊文著,日本行政調查權之行使,法律評論第63期第7-9合刊,1997年9月。
10. 17、周治平,從戰前日本憲兵制度觀察我國憲兵之發展,憲兵半年刊第59期,2004年9月。
11. 19、洪文玲,行政調查制度之研究,警察法學第4期,2005年12月。
12. 20、洪文玲,論美國行政調查制度,中央警察大學學報第43期,2006年6月。
13. 22、姚其壯,淺釋軍事長官在軍事審判法上之權力與義務,國防雜誌20卷1期,2005年1月。
14. 24、徐國勇,新航空難事件刑事偵查與行政調查之問題探討,全國律師第5卷第6期,2001年6月。
15. 25、陳運財,司法警察人員「查訪報告」之證據能力-評最高法院刑事判決八十六年度台上字第六二一○號,月旦法學雜誌第55期,1999年12月。
 
無相關點閱論文