跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 20:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇恆佳
研究生(外文):Heng-Chia Su
論文名稱:純鎂上製備生物可降解性二水磷酸氫鈣皮膜以及其在人工體液內之腐蝕行為
論文名稱(外文):Fabrication of biodegradable DCPD coating on pure magnesium and its corrosion behavior in simulated body fluid
指導教授:林招松林招松引用關係
口試委員:李岳聯葛明德莊東漢汪俊延
口試日期:2015-07-13
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:114
中文關鍵詞:純鎂磷酸鈣鹽化成處理生物活性生物可降解抗蝕性
外文關鍵詞:pure magnesiumcalcium phosphate conversion coatingbioactivebiodegradablecorrosion resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鎂合金近十年來在生物醫用材料受到重視,相較於傳統鈍態金屬植入物如不鏽鋼、鈦合金、鈷鉻鉬合金等,鎂合金具有無毒性、生物相容性、可降解性、不需經二次手術取出等優勢,是第三代生物醫療材料中具應用潛力的材料。但未經處理的鎂合金在人體環境中腐蝕速率過快,必須經適當處理提升抗蝕性。

本研究著重在純鎂表面製作一層具生物活性的二水磷酸氫鈣皮膜來降低在模擬人工體液中的腐蝕速率。文獻指出,二水磷酸氫鈣皮膜具有一定程度的保護性,植入後能與人體骨頭組織緊密結合並促進骨細胞成長,具有良好的生物相容性及生物活性。製程選用化成的方式,將商業用純鎂浸泡在含0.152 M硝酸鈣以及0.217 M磷酸二氫銨之酸性化成液中數分鐘後取出,進行表面形貌、橫截面觀察(SEM)、成分分析(EDX、XPS、XRD)。抗腐蝕性則以電化學(EIS、極化曲線)與析氫試驗量測,來判斷在模擬人工體液中的腐蝕速率以及腐蝕形貌。並以實驗數據來推測皮膜組成及皮膜生成的反應機構。

結果顯示在未添加硝酸鈉化成液中,40℃反應下之化成皮膜披覆最均勻且無脫水裂紋,有最佳的抗蝕性。此外,在40℃之化成液中額外添加不同濃度的硝酸鈉,可加速化成初期皮膜披覆在表面的速度。在化成液中額外添加硝酸鈉可產生較緻密、孔隙率較低的皮膜。在本實驗中,硝酸鈉添加的量為0.8、1.6、3.2以及6.4 mM,在0.8 mM至3.2 mM的區間中,皮膜在模擬人工體液內的腐蝕電流密度隨添加量增加而降低,直到6.4 mM此趨勢消失,3.2 mM之皮膜有最低的腐蝕電流密度。在析氫試驗中,所有參數的皮膜在前兩天析氫量較少,第三天析氫量大幅上升,推測皮膜已有局部崩解的現象,在前四天內析氫量的趨勢和電化學趨勢相同,研究以皮膜成長機制討論加入硝酸鈉後皮膜抗蝕性提升之原因。


Magnesium and its alloys have become increasingly important in the biomedical field for the last decade. Comparing to the traditional bioinert implants such as stainless steels, titanium alloys and cobalt-chromium-molybdem alloys, magnesium and its alloys have some advantages including biocompatibility, biodegradability, non-toxicity, signifying them as one of the potential biodegradable implants. However, magnesium and its alloys corrode rapidly in the physiological environment. Surface modification is thus essential to enhance the corrosion resistance of magnesium alloys.

Dicalcium phosphate (DCPD) coating can provide some degrees of protection from corrosion in the simulated body fluid and stimulate the attachment and differentiation of bone cells. The present study employed chemical conversion coating method to fabricate bioactive DCPD coating on pure magnesium. The conversion solution was mainly composed of 0.152 M calcium nitrate and 0.217 M ammonium dihydrogen phosphate. After immersion in the conversion solution for several min., the DCPD-coated magnesium was characterized by SEM/EDS and its corrosion resistance was evaluated by polarization curves, EIS, and hydrogen evolution measurement in simulated body fluid (Hank balanced salt solution, HBSS).

The results show that the DCPD coating formed in the conversion solution free of sodium nitrate at 40℃ is homogeneous and crack-free. The presence of sodium nitrate (0.8 ~ 6.4 mM) in the solution at 40℃ accelerates the nucleation of DCPD. The resulting coating thus has lower porosity and better corrosion resistance than that formed in the absent of sodium nitrate. Moreover, the coating formed in the solution with the addition of 3.2 mM sodium nitrate exhibits the lowest porosity and the smallest corrosion current density. The DCPD-coated magnesium underwent lower amounts of hydrogen evolution than the bare magnesium during the first two-day immersion in HBSS. A marked increase in hydrogen evolution was observed after three days of immersion, suggesting that the DCPD coating had been attacked locally. The amount of hydrogen evolved during the first four-day of immersion was consistent with the electrochemical characterization results. Finally, how the presence of sodium nitrate affects the formation and corrosion resistance of the DCPD coating on magnesium is discussed in detail.


第一章 緒論 1
1-1 前言 1
1-2 研究動機 4
第二章 文獻回顧 6
2-1 生物醫療鎂合金植入物歷史回顧 6
2-2 人骨性質與結構 7
2-3 鎂合金用於生物醫療植入材的優勢 9
2-4 生物醫療鎂合金使用標準與研究方向 13
2-5 鎂合金的腐蝕行為 21
2-5-1 鎂合金在模擬人工體液中的腐蝕行為及腐蝕測量方法 21
2-5-2 鎂合金在動物體內的腐蝕行為 22
2-6 醫用鎂合金用於骨植入材料現況 27
2-7 磷酸鈣特性 29
2-8 鎂合金上披覆磷酸鈣方法 34
2-8-1 化成處理(chemical conversion) 34
2-8-2 電沉積法(electrodeposition) 36
2-8-3 微弧氧化法(micro-arc oxidation) 37
2-8-4 生物仿生法(biomimetic method) 38
第三章 實驗方法及步驟 41
3-1 製程說明 41
3-2 材料來源和分析 41
3-3 實驗流程 42
3-4 製程條件 43
3-5 化成皮膜性質觀察與量測 44
3-5-1 化成皮膜顏色觀察 44
3-5-2 化成皮膜附著性量測 44
3-6 化成皮膜掃描式顯微鏡觀察和分析 46
3-7 化成皮膜抗蝕性評估 48
3-7-1 開路電位量測 48
3-7-2 極化曲線量測 49
3-7-3 交流阻抗分析 50
3-7-4 析氫速率量測 53
3-8 化成皮膜表面分析 55
3-8-1 低掠角X-Ray繞射分析 55
3-8-2 X-ray光電子能譜分析 55
3-8-3 歐傑電子能譜分析 56
3-9 皮膜孔隙率量測 58
第四章 實驗結果 59
4-1 化成液未添加硝酸鈉在不同溫度下之化成皮膜 59
4-1-1 化成皮膜表面色澤觀察 59
4-1-2 皮膜微結構分析 59
4-1-3 XPS化學能譜分析 61
4-1-4 化成皮膜低掠角X-Ray繞射分析 63
4-1-5 化成皮膜附著性量測 63
4-1-6 化成皮膜抗蝕性評估 64
4-2 化成液添加硝酸鈉之化成皮膜 68
4-2-1 化成皮膜表面色澤觀察 68
4-2-2 皮膜微結構分析 68
4-2-3 XPS化學能譜分析 70
4-2-4 化成皮膜低掠角X-Ray繞射分析 73
4-2-5 化成皮膜附著性量測 73
4-2-6 化成皮膜抗蝕性評估 74
4-2-7 皮膜孔隙率計算 79
4-3 化成液有無添加硝酸鈉化成初期比較 80
4-3-1 SEM表面形貌觀察 80
4-3-2 歐傑電子能譜元素縱深分析 84
4-4 析氫試驗以及在模擬人工體液降解之腐蝕形貌 86
第五章 討論 92
5-1 化成液中添加硝酸鈉之影響 92
5-2 皮膜生成機構 96
5-3 鎂合金披覆二水磷酸氫鈣皮膜抗蝕情形之文獻探討 99
第六章 結論 103
第七章 未來展望 104
參考文獻 105


1.Song, Y., D. Shan, R. Chen, F. Zhang, and E.-H. Han, A novel phosphate conversion film on Mg–8.8 Li alloy. Surface and Coatings Technology, 2009. 203(9): p. 1107-1113.
2.Song, Y., D. Shan, R. Chen, F. Zhang, and E.-H. Han, Formation mechanism of phosphate conversion film on Mg–8.8 Li alloy. Corrosion Science, 2009. 51(1): p. 62-69.
3.Witte, F., The history of biodegradable magnesium implants: a review. Acta Biomater, 2010. 6(5): p. 1680-92.
4.Heublein, B., R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, and A. Haverich, Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart, 2003. 89(6): p. 651-656.
5.Haferkamp, H., R. Boehm, U. Holzkamp, C. Jaschik, V. Kaese, and M. Niemeyer, Platform Science and Technology for Advanced Magnesium Alloys. Alloy Development, Processing and Applications in Magnesium Lithium Alloys. Materials Transactions, 2001. 42(7): p. 1160-1166.
6.Hench, L.L. and J.M. Polak, Third-generation biomedical materials. Science, 2002. 295(5557): p. 1014-1017.
7.Witte, F., V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. Wirth, and H. Windhagen, In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 2005. 26(17): p. 3557-3563.
8.周德程, 解剖生理學. 1972: 昭人出版社. p.57-108.
9.黃莉婷, 特定單脈衝電磁場與植物性雌激素對蝕骨細胞分化機轉之探討, in 中原大學醫學工程學系碩士論文. 2004年6月. p. 9-18.
10.Wang, M., Developing bioactive composite materials for tissue replacement. Biomaterials, 2003. 24(13): p. 2133-2151.
11.顧興卿, 徐國風, 生物醫學材料學. 1993, 天津: 天津科技翻譯出版有限公司.
12.Gross, U., J. Brandes, V. Strunz, I. Bab, and J. Sela, The ultrastructure of the interface between a glass ceramic and bone. Journal of biomedical materials research, 1981. 15(3): p. 291-305.
13.Shadanbaz, S. and G.J. Dias, Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater, 2012. 8(1): p. 20-30.
14.Staiger, M.P., A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 2006. 27(9): p. 1728-1734.
15.Song, G. and S.-z. Song, A possible biodegradable magnesium implant material. Advanced Engineering Materials, 2007. 9(4): p. 298-302.
16.Zhou, H., J.G. Lawrence, and S.B. Bhaduri, Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review. Acta biomaterialia, 2012. 8(6): p. 1999-2016.
17.Hornberger, H., S. Virtanen, and A.R. Boccaccini, Biomedical coatings on magnesium alloys - a review. Acta Biomater, 2012. 8(7): p. 2442-55.
18.李龍川, 高家誠, 王勇, 醫用鎂合金的腐蝕行為與表面改性. 材料導報, 2003. 17(10): p. 29.
19.Terjesen, T., Bone healing after metal plate fixation and external fixation of the osteotomized rabbit tibia. Acta Orthopaedica, 1984. 55(1): p. 69-77.
20.Terjesen, T. and K. Apalset, The influence of different degrees of stiffness of fixation plates on experimental bone healing. Journal of orthopaedic research, 1988. 6(2): p. 293-299.
21.Gu, X., Y. Zheng, Y. Cheng, S. Zhong, and T. Xi, In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials, 2009. 30(4): p. 484-498.
22.Gu, X., X. Xie, N. Li, Y. Zheng, and L. Qin, In vitro and in vivo studies on a Mg–Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomaterialia, 2012. 8(6): p. 2360-2374.
23.Bard, A.J. and L.R. Faulkner, Fundamentals and applications. Electrochemical Methods, 2nd ed.; Wiley: New York, 2001.
24.Fischer, J., M.H. Prosenc, M. Wolff, N. Hort, R. Willumeit, and F. Feyerabend, Interference of magnesium corrosion with tetrazolium-based cytotoxicity assays. Acta biomaterialia, 2010. 6(5): p. 1813-1823.
25.Song, G., Control of biodegradation of biocompatable magnesium alloys. Corrosion Science, 2007. 49(4): p. 1696-1701.
26.Erinc, M., W. Sillekens, R. Mannens, and R. Werkhoven. Applicability of existing magnesium alloys as biomedical implant materials. in Magnesium Technology 2009, 15 February 2009 through 19 February 2009, San Francisco, CA, USA, Conference code: 76923, 209-214. 2009.
27.Gu, X.-N., S.-S. Li, X.-M. Li, and Y.-B. Fan, Magnesium based degradable biomaterials: A review. Frontiers of Materials Science, 2014. 8(3): p. 200-218.
28.Wang, H., Y. Estrin, and Z. Zúberová, Bio-corrosion of a magnesium alloy with different processing histories. Materials Letters, 2008. 62(16): p. 2476-2479.
29.Yan, T., L. Tan, B. Zhang, and K. Yang, Fluoride Conversion Coating on Biodegradable AZ31B Magnesium Alloy. Journal of Materials Science & Technology, 2014.
30.Yan, T., L. Tan, D. Xiong, X. Liu, B. Zhang, and K. Yang, Fluoride treatment and in vitro corrosion behavior of an AZ31B magnesium alloy. Materials Science and Engineering: C, 2010. 30(5): p. 740-748.
31.Pourbaix, M., Atlas of electrochemical equilibria in aqueous solutions. 1974.
32.Witte, F., N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, and F. Feyerabend, Degradable biomaterials based on magnesium corrosion. Current opinion in solid state and materials science, 2008. 12(5): p. 63-72.
33.戴光勇, 鎂合金表面處理技術 (上)(下). 1988,1989, 材料與社會24,25期.
34.Li, Z., X. Gu, S. Lou, and Y. Zheng, The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials, 2008. 29(10): p. 1329-1344.
35.Bornapour, M., N. Muja, D. Shum-Tim, M. Cerruti, and M. Pekguleryuz, Biocompatibility and biodegradability of Mg–Sr alloys: the formation of Sr-substituted hydroxyapatite. Acta Biomaterialia, 2013. 9(2): p. 5319-5330.
36.Guan, R.-g., A.F. Cipriano, Z.-y. Zhao, J. Lock, D. Tie, T. Zhao, T. Cui, and H. Liu, Development and evaluation of a magnesium–zinc–strontium alloy for biomedical applications—Alloy processing, microstructure, mechanical properties, and biodegradation. Materials Science and Engineering: C, 2013. 33(7): p. 3661-3669.
37.Zhang, S., X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, and Y. Jiang, Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomaterialia, 2010. 6(2): p. 626-640.
38.Wang, Y., J.-c. Gao, Y. Zhang, X.-f. Zhou, and S. Wu, Mechanism of pure magnesium corrosion immersed in simulated body fluid. CHINESE JOURNAL OF NONFERROUS METALS, 2007. 17(12): p. 1981.
39.Song, Y., D. Shan, R. Chen, F. Zhang, and E.-H. Han, Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid. Materials Science and Engineering: C, 2009. 29(3): p. 1039-1045.
40.Zong, Y., G. Yuan, X. Zhang, L. Mao, J. Niu, and W. Ding, Comparison of biodegradable behaviors of AZ31 and Mg–Nd–Zn–Zr alloys in Hank''s physiological solution. Materials Science and Engineering: B, 2012. 177(5): p. 395-401.
41.Witte, F., J. Fischer, J. Nellesen, H.-A. Crostack, V. Kaese, A. Pisch, F. Beckmann, and H. Windhagen, In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 2006. 27(7): p. 1013-1018.
42.Xin, Y., C. Liu, X. Zhang, G. Tang, X. Tian, and P.K. Chu, Corrosion behavior of biomedical AZ91 magnesium alloy in simulated body fluids. Journal of Materials Research, 2007. 22(07): p. 2004-2011.
43.Barrere, F., C. Van Blitterswijk, K. De Groot, and P. Layrolle, Nucleation of biomimetic Ca–P coatings on Ti6Al4V from a SBF× 5 solution: influence of magnesium. Biomaterials, 2002. 23(10): p. 2211-2220.
44.Xin, Y., K. Huo, H. Tao, G. Tang, and P.K. Chu, Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomaterialia, 2008. 4(6).
45.Kirkland, N., N. Birbilis, and M. Staiger, Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta biomaterialia, 2012. 8(3): p. 925-936.
46.Kraus, T., S.F. Fischerauer, A.C. Hänzi, P.J. Uggowitzer, J.F. Löffler, and A.M. Weinberg, Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta biomaterialia, 2012. 8(3): p. 1230-1238.
47.Zhen, Z., T.-f. Xi, and Y.-f. Zheng, A review on in vitro corrosion performance test of biodegradable metallic materials. Transactions of Nonferrous Metals Society of China, 2013. 23(8): p. 2283-2293.
48.Xin, Y., T. Hu, and P. Chu, In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta biomaterialia, 2011. 7(4): p. 1452-1459.
49.Kokubo, T. and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006. 27(15): p. 2907-15.
50.Oyane, A., H.M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, and T. Nakamura, Preparation and assessment of revised simulated body fluids. Journal of Biomedical Materials Research Part A, 2003. 65(2): p. 188-195.
51.張慈映, 醫療器材產業年鑑. 2013: 工業技術研究院產業經濟與趨勢研究中心.
52.Windhagen, H., K. Radtke, A. Weizbauer, J. Diekmann, Y. Noll, U. Kreimeyer, R. Schavan, C. Stukenborg-Colsman, and H. Waizy, Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. Biomed Eng Online, 2013. 12: p. 62.
53.YUAN, G.-y., X.-b. ZHANG, J.-l. NIU, H.-r. TAO, D.-y. CHEN, Y.-h. HE, Y. JIANG, and W.-j. DING, Research progress of new type of degradable biomedical magnesium alloys JDBM [J]. The Chinese Journal of Nonferrous Metals, 2011. 21(10): p. 2476-2488.
54.Elliott, J.C., Structure and chemistry of the apatites and other calcium orthophosphates. 2013: Elsevier. p.1-61.
55.Ong, J., M.R. Appleford, and G. Mani, Introduction to Biomaterials: Basic Theory with Engineering Applications. 2013: Cambridge University Press. p.180-187.
56.Santin, M. and G.J. Phillips, Biomimetic, Bioresponsive, and Bioactive Materials: An Introduction to Integrating Materials with Tissues. 2012: John Wiley & Sons. p.172-174.
57.Christa, R., Calcium phosphate biomaterials and bone mineral. Biomaterials, 1990. 11: p. 13-15.
58.LeGeros, R.Z., Properties of osteoconductive biomaterials: calcium phosphates. Clinical orthopaedics and related research, 2002. 395: p. 81-98.
59.Chang, Y.L., C.M. Stanford, and J.C. Keller, Calcium and phosphate supplementation promotes bone cell mineralization: Implications for hydroxyapatite (HA)‐enhanced bone formation. Journal of biomedical materials research, 2000. 52(2): p. 270-278.
60.SUZUKI, O., M. NAKAMURA, Y. MIYASAKA, M. KAGAYAMA, and M. SAKURAI, Bone formation on synthetic precursors of hydroxyapatite. The Tohoku journal of experimental medicine, 1991. 164(1): p. 37-50.
61.Ducheyne, P., S. Radin, and L. King, The effect of calcium phosphate ceramic composition and structure on in vitro behavior. I. Dissolution. Journal of biomedical materials research, 1993. 27(1): p. 25-34.
62.Iwanaga, H., T. Shibutani, Y. Moriwaki, and Y. Iwayama, Osteoclastic responses to various calcium phosphates in cell cultures. Journal of biomedical materials research, 1999. 47(3): p. 424-433.
63.Radin, S. and P. Ducheyne, The effect of calcium phosphate ceramic composition and structure on in vitro behavior. II. Precipitation. Journal of biomedical materials research, 1993. 27(1): p. 35-45.
64.Radin, S. and P. Ducheyne, Effect of bioactive ceramic composition and structure on in vitro behavior. III. Porous versus dense ceramics. Journal of biomedical materials research, 1994. 28(11): p. 1303-1309.
65.Dorozhkin, S.V., Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter, 2011. 1(2): p. 121-164.
66.Gray, J. and B. Luan, Protective coatings on magnesium and its alloys—a critical review. Journal of alloys and compounds, 2002. 336(1): p. 88-113.
67.Chen, X.B., N. Birbilis, and T.B. Abbott, Effect of [Ca2+] and [PO43-] levels on the formation of calcium phosphate conversion coatings on die-cast magnesium alloy AZ91D. Corrosion Science, 2012. 55: p. 226-232.
68.Su, Y., G. Li, and J. Lian, A chemical conversion hydroxyapatite coating on AZ60 magnesium alloy and its electrochemical corrosion behaviour. Int J Electrochem Sci, 2012. 7: p. 11497-511.
69.Su, Y., L. Niu, Y. Lu, J. Lian, and G. Li, Preparation and corrosion behavior of calcium phosphate and hydroxyapatite conversion coatings on AM60 magnesium alloy. Journal of The Electrochemical Society, 2013. 160(11): p. C536-C541.
70.Chen, X.-B., N. Kirkland, H. Krebs, M.-A. Thiriat, S. Virtanen, D. Nisbet, and N. Birbilis, In vitro corrosion survey of Mg-x Ca and Mg-3Zn-y Ca alloys with and without calcium phosphate conversion coatings. Corrosion Engineering, Science and Technology, 2012. 47(5): p. 365-373.
71.Wang, Q., L. Tan, Q. Zhang, J. Qiu, and K. Yang, PRECIPITATION CONTROL AND MECHANICAL PROPERTY OF CALCIUM PHOSPHATE–COATED AZ31B ALLOY FOR BIOMEDICAL APPLICATION. Biomedical Engineering: Applications, Basis and Communications, 2011. 23(03): p. 193-203.
72.Song, Y.W., D.Y. Shan, and E.H. Han, Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Materials Letters, 2008. 62(17-18): p. 3276-3279.
73.Song, Y., S. Zhang, J. Li, C. Zhao, and X. Zhang, Electrodeposition of Ca–P coatings on biodegradable Mg alloy: in vitro biomineralization behavior. Acta Biomaterialia, 2010. 6(5): p. 1736-1742.
74.Wang, H., S. Zhu, L. Wang, Y. Feng, X. Ma, and S. Guan, Formation mechanism of Ca-deficient hydroxyapatite coating on Mg–Zn–Ca alloy for orthopaedic implant. Applied Surface Science, 2014. 307: p. 92-100.
75.Lu, W., C. Ou, Z. Zhan, P. Huang, B. Yan, and M. Chen, Microstructure and in vitro corrosion properties of ZK60 magnesium alloy coated with calcium phosphate by electrodeposition at different temperatures. Int J Electrochem Sci, 2013. 8: p. 10746-57.
76.Ou, C., W. Lu, Z. Zhan, P. Huang, B. Yan, and M. Chen, Effect of Electrodepositing Voltage on the Structural and in Vitro Corrosion Properties of CaP Coatings on ZK60 Magnesium Alloy. Int. J. Electrochem. Sci, 2013. 8: p. 11151-11160.
77.Walsh, F., C. Low, R. Wood, K. Stevens, J. Archer, A. Poeton, and A. Ryder, Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys. Transactions of the IMF, 2009. 87(3): p. 122-135.
78.Zhang, X., Z. Zhao, F. Wu, Y. Wang, and J. Wu, Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in Hank’s solution. Journal of Materials Science, 2007. 42(20): p. 8523-8528.
79.Srinivasan, P.B., J. Liang, C. Blawert, M. Störmer, and W. Dietzel, Characterization of calcium containing plasma electrolytic oxidation coatings on AM50 magnesium alloy. Applied Surface Science, 2010. 256(12): p. 4017-4022.
80.Kokubo, T., H. Kushitani, S. Sakka, T. Kitsugi, and T. Yamamuro, Solutions able to reproduce in vivo surface‐structure changes in bioactive glass‐ceramic A‐W3. Journal of biomedical materials research, 1990. 24(6): p. 721-734.
81.Barrere, F., C. Van Blitterswijk, K. De Groot, and P. Layrolle, Influence of ionic strength and carbonate on the Ca-P coating formation from SBF× 5 solution. Biomaterials, 2002. 23(9): p. 1921-1930.
82.Barrere, F., P. Layrolle, C. Van Blitterswijk, and K. De Groot, Biomimetic calcium phosphate coatings on Ti6Al4V: a crystal growth study of octacalcium phosphate and inhibition by Mg2+and HCO3-. Bone, 1999. 25(2): p. 107S-111S.
83.Qu, H. and M. Wei, Improvement of bonding strength between biomimetic apatite coating and substrate. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2008. 84(2): p. 436-443.
84.Barrere, F., P. Layrolle, C. Van Blitterswijk, and K. De Groot, Biomimetic coatings on titanium: a crystal growth study of octacalcium phosphate. Journal of Materials Science: Materials in Medicine, 2001. 12(6): p. 529-534.
85.Waterman, J., A. Pietak, N. Birbilis, T. Woodfield, G. Dias, and M.P. Staiger, Corrosion resistance of biomimetic calcium phosphate coatings on magnesium due to varying pretreatment time. Materials Science and Engineering: B, 2011. 176(20): p. 1756-1760.
86.Nguyen, T., J. Waterman, M. Staiger, and T. Woodfield, Controlling in vitro corrosion rate of pure Mg with rough surface texture via biomimetic coating systems. Corrosion Engineering, Science and Technology, 2012. 47(5): p. 358-364.
87.Shadanbaz, S., J. Walker, M.P. Staiger, G.J. Dias, and A. Pietak, Growth of calcium phosphates on magnesium substrates for corrosion control in biomedical applications via immersion techniques. J Biomed Mater Res B Appl Biomater, 2013. 101(1): p. 162-72.
88.Standard, A., Standard Specification for Unalloyed Magnesium Ingot and Stick For Remelting. 2007. B92/B92M-07.
89.D, A., Standard Test Methods for Measuring Adhesion by Tape Test. 2005.
90.Standard, A., Standard Test Methods for Measuring Adhesion by Tape Test. 2005. D3359-02.
91.G31-72, A., Standard practice for laboratory immersion corrosion testing of metals. 1999.
92.Standard, A., G102-89, Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2006. 3.
93.Lins, V.d.F.C., G.F. de Andrade Reis, C.R. de Araujo, and T. Matencio, Electrochemical impedance spectroscopy and linear polarization applied to evaluation of porosity of phosphate conversion coatings on electrogalvanized steels. Applied Surface Science, 2006. 253(5): p. 2875-2884.
94.Mathew, M., P. Kingsbury, S. Takagi, and W. Brown, A new struvite-type compound, magnesium sodium phosphate heptahydrate. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1982. 38(1): p. 40-44.
95.Wu, L., L. Zhao, J. Dong, W. Ke, and N. Chen, Potentiostatic Conversion of Phosphate Mineral Coating on AZ31 Magnesium Alloy in 0.1 M K2HPO4 Solution. Electrochimica Acta, 2014. 145: p. 71-80.
96.Doyle, J.D. and S.A. Parsons, Struvite formation, control and recovery. Water Research, 2002. 36(16): p. 3925-3940.
97.Zhao, H., S. Cai, Z. Ding, M. Zhang, Y. Li, and G. Xu, A simple method for the preparation of magnesium phosphate conversion coatings on a AZ31 magnesium alloy with improved corrosion resistance. RSC Advances, 2015. 5(31): p. 24586-24590.
98.Liu, G., S. Tang, D. Li, and J. Hu, Self-adjustment of calcium phosphate coating on micro-arc oxidized magnesium and its influence on the corrosion behaviour in simulated body fluids. Corrosion Science, 2014. 79: p. 206-214.
99.Cheng, Z., J. Lian, Y. Hui, and G. Li, Biocompatible DCPD Coating Formed on AZ91D Magnesium Alloy by Chemical Deposition and Its Corrosion Behaviors in SBF. Journal of Bionic Engineering, 2014. 11(4): p. 610-619.
100.Wang, Y., M. Wei, and J. Gao, Improve corrosion resistance of magnesium in simulated body fluid by dicalcium phosphate dihydrate coating. Materials Science and Engineering: C, 2009. 29(4): p. 1311-1316.
101.Hu, J., C. Wang, W. Ren, S. Zhang, and F. Liu, Microstructure evolution and corrosion mechanism of dicalcium phosphate dihydrate coating on magnesium alloy in simulated body fluid. Materials Chemistry and Physics, 2010. 119(1): p. 294-298.
102.Jamesh, M., S. Kumar, and T.S. Narayanan, Electrodeposition of hydroxyapatite coating on magnesium for biomedical applications. Journal of Coatings Technology and Research, 2012. 9(4): p. 495-502.
103.Bakhsheshi-Rad, H., M. Idris, and M. Abdul-Kadir, Synthesis and in vitro degradation evaluation of the nano-HA/MgF2 and DCPD/MgF2 composite coating on biodegradable Mg–Ca–Zn alloy. Surface and Coatings Technology, 2013. 222: p. 79-89.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top