跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/06 02:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顧元斌
研究生(外文):Yuan-Bin Gu
論文名稱:以脫層蒙脫石/多壁奈米碳管/聚合型離子液體製作軟質固態電解質之製程及其在染料敏化太陽能電池之應用
論文名稱(外文):Fabrications of Flexible Solid Electrolytes Composed of Exfoliated Montmorillonite/Multi-walled Carbon Nanotubes/Polymerized Ionic Liquids and Their Applications on Dye-Sensitized Solar Cells
指導教授:林金福林金福引用關係
指導教授(外文):King-Fu Lin
口試委員:何國川邱文英
口試委員(外文):Kuo-Chuan HoWen-Yen Chiu
口試日期:2015-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:107
中文關鍵詞:EMIIAMIMRuS離子液體脫層蒙脫石奈米碳管染料敏化太陽能電池長效
外文關鍵詞:EMIIAMIMIRuSIonic LiquidsexMMTMWCNTDSSClong term
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗首先合成一種可進行聚合反應的苯乙烯官能基的釕金屬染料Ru-S,并利用NMR、UV-vis光譜等方法鑑定其結構,同時還合成了聚合型離子液體1-(2-acryloyloxy-ethyl)-3-methylimidazol-1-ium iodide (AMIMI),也用NMR測定其結構。并以UV-Vis光譜測試Ru-S吸附在TiO2表面後以不同濃度AMIMI的ACN溶液進行共聚合反應後的脫附實驗,探討其與TiO2鍵結的穩定性。
在太陽能電池元件的表現上,由於AMIMI黏度太高,本實驗設計了五種不同比例的EMII/AMIMI (1-Ethyl-3-methylimidazolium Iodide)進行稀釋,分別為1:4、1:3、1:2、1:1、2:1。實驗發現隨著EMII添加量的增加,電解質的黏度明顯降低、效率隨之提升,在EMII:AMIMI=1:1時,系統有最大效率,效率從原本的3.99%提升至5.87%。隨後將不同比例的exMMT加至EMII:AMIMI=1:1的電解質製作的DSSC后,發現隨著exMMT添加量的增大,其Voc上升,Jsc與效率都會明顯提升,當加入exMMT量達到1%時達到最大值,從不加exMMT的5.03 %提高到5.83%,推測因為exMMT的加入促進了I-氧化成I3-,使電解質中有更多離子幫助傳導。接著將不同比例的MWCNT加入EMII:AMIMI=1:1的電解質製作的DSSC中,可發現MWCNT的加入明顯提升了元件的Jsc,更是將效率從未加MWCNT的5.15%提升至6.19%,添加量為0.2wt%時最佳。推測原因是因為奈米碳管的加入能幫助電子導電,使電流上升。另外將不同比例的exMMT加入含有0.2wt%的MWCNT的電解質組成的DSSC後發現,在添加量達到1wt%時電池效率從6.19%提升至6.42%,而增加太多exMMT效率下降明顯。推測原因是因為只含MWCNT的元件本身存在MWCNT可以幫助電子導電,而少量的exMMT加入影響不明顯,加至1%時因exMMT幫助I-轉變成I3-可以幫助離子導電,兩者效應可發出促進,因此效率變高,但加入exMMT太多膠態系統容易過度硬化反而降低效應。
而對元件的長效性分析可以發現添加MWCNT後電池元件穩定性遠大於只含有EMII/AMIMI的體系,在經過一個月后添加MWCNT的電池仍保有7成以上的效率,而不加MWCNT的體系只剩下2成。將做完長效性的試片打開并用SEM觀察其表面形貌發現經過長效處理的試片因AMIMI聚合而產生裂紋,且添加MWCNT的試片裂紋較多且大,這可能是因為MWCNT導熱係數高,照光時AMIMI聚合硬化速度快而加速龜裂。

關鍵字:EMII;AMIMI;RuS;離子液體;exMMT;MWCNT;DSSC;長效

We synthesized the crosslinkable ruthenium complex with styryl groups attached on the bipyridine ligand, denoted as Ru-S which was characterized by NMR and UV-vis spectroscopies for this study. And we also synthesized 1-(2-acryloyloxy-ethyl)-3-methylimidazol-1-ium iodide (AMIMI), a polymerizable ionic liquid. The stability of Ru-S after crosslinking and copolymerization with different concentrations of AMIMI in ACN solutions were investigated by UV-vis spectroscopy through rinsing with NaOH aqueous solution to remove the unreacted RuS.
In order to decrease the viscosity of AMIMI ionic liquid electrolyte, EMII was added to prepare five different weight ratios of EMII/AMIMI. The power conversion efficiency (PCE) of resulting DSSCs was increased when the content of EMII was increased. The PCE was increased from 3.99% to 5.87% when the weight ratio of EMII/AMIMI reached 1:1. Then different contents of exMMT were incorporated into the eletrolytes with EMII/AMIMI=1:1 for the DSSC. The Jsc and PCE were both increased with increasing the content of exMMT. The PCE reached up to 5.83% when the content of exMMT was 1 wt%. It is because the presence of exMMT can promote the oxidation of I- to I3-. Moreover, different contents of MWCNT were also incorporated into the eletrolytes with EMII/AMIMI=1:1 for the DSSC. The presnence of MWCNT could also increase the Jsc and PCE of the resulting DSSC . The PCE could reach up to 6.19% as 0.2wt% MWCNT was incorporated. It is because the presence of MWCNT can increase the conductivity of the electrolyte. Then different contents of exMMT was incorporated into the eletrolytes with EMII/AMIMI=1:1 and 0.2wt% MWCNT for DSSC. The best performance of DSSC had the PCE increased from 6.19% to 6.42% as 1 wt% exMMT was incorporated. That is because the MWCNT can increase the conductivity of the electrolyte, and exMMT can promote the oxidation of I- to I3-. When the content of exMMT was more than 1 wt%, the system would be over the gel point and reduce the effects.
The long term service inverstingaion of DSSC showed that the stability of the DSSC with MWCNT was much greater than that without MWCNT. The PCE of the devise with MWCNT could remain more than 70% after testing for one month. However the PCE of the devise without MWCNT decreased to only 20%. Then we open the device and investigated the morphology of the electrolyte surface with SEM. More cracks have been produced on the layer of polymerized ionic liquid electrolyte in the device with MWCNT. It indicated that MWCNT with high thermal conductivity might accelerate the polymerization of AMIMI under the exposure of sunlight during long term testing.


Keyword: EMII;AMIMI;RuS;Ionic Liquids;exMMT;MWCNT;DSSC; long term


口試委員會審定書 #
致謝 I
摘要 IV
ABSTRACT VI
目錄 VIII
圖目錄 XI
表目录 XVI
Chapter 1 緒論 1
1.1 背景 1
1.2 染料敏化太陽能電池的發展與未來 2
1.3 二氧化鈦 4
1.4 蒙脫石 7
1.5 奈米碳管 9
1.5.1 奈米碳管的結構 9
1.5.2 奈米碳管的特性 10
Chapter 2 文獻回顧與研究目的 11
2.1 染料敏化太陽能電池的簡介 11
2.2 染料敏化太陽能電池結構 14
2.2.1 透明導電基板 14
2.2.2 染料 14
2.2.3 工作電極 16
2.2.4 電解質 16
2.2.5 對電極 19
2.3 太陽能電池的檢測 20
2.3.1 太陽能電池光電轉換效率的計算 20
2.3.2 交流阻抗分析 21
2.3.3 Intensity Modulated photovoltage spectroscopy(IMVS)簡介 24
2.3.4 Intensity Modulated photocurrent spectroscopy(IMPS)簡介 25
2.4 研究動機 28
2.5 論文架構 29
Chapter 3 實驗方法 31
3.1 實驗藥品 31
3.2 實驗設備 33
3.3 染料的合成方法 34
3.3.1 合成Ru-S 34
3.4 二氧化鈦渡液的製備 38
3.5 電解質的製備 38
3.5.1 1-(2-acryloyloxy-ethyl)-3-methylimidazol-1-ium iodide (AMIMI) 單體的合成 38
3.5.2 奈米碳管的改質 39
3.5.3 脫層蒙脫石(exMMT)的製備 39
3.5.4 軟質固態電解質的製備 40
3.6 薄膜電極的製備 44
3.6.1 導電玻璃的清洗 44
3.6.2 FTO導電玻璃的清洗 44
3.6.3 ITO導電玻璃的清洗 44
3.6.4 工作電極製備 44
3.6.5 白金對電極的製備 45
3.7 太陽能電池的組裝 46
3.7.1 電池元件組裝 46
3.7.2 元件封裝 46
3.8 太陽能電池光電化學測試 48
3.8.1 光電流-電壓特徵曲線(Photocurrent-Voltage Characterization) 48
3.8.2 交流阻抗分析(AC Impedance ) 48
3.8.3 IMPS與IMVS之量測 49
3.8.4 開環電壓衰退的瞬態與電量收集之量測 49
3.8.5 元件長效性測試 49
Chapter 4 結果與討論 51
4.1 Ru-S的鑑定 51
4.1.1 Ru-S染料的NMR鑑定 51
4.1.2 Ru-S染料的紫外光/可見光光譜鑑定 52
4.1.3 交聯后的Ru-S紫外光/可見光光譜 53
4.1.4 Ru-S與N3製備的液態染料敏化太陽能電池性質對比 54
4.2 不同EMII/AMIMI重量比例電解質對Ru-S染料元件性能的影響 56
4.2.1 AMIMI的鑑定 56
4.2.2 不同比例EMII/AMIMI電解質之DSSC之電池特性分析 58
4.3 軟質固態電解質之太陽能電池 65
4.3.1 添加不同質量分數exMMT於EMII/AMIMI=1:1電解質之元件光伏性質分析 65
4.3.2 添加不同質量分數的MWCNT於EMII/AMIMI=1:1的電解質之元件光伏特性分析 75
4.3.3 添加不同質量分數的exMMT於含0.2wt%MWCNT之EMII/AMIMI=1:1電解質元件之光伏性質分析 85
4.4 元件長效性分析 94
Chapter 5 結論 100
參考文獻 103


[1]http://www.wbgu.de/wbgu_jg2003_kurz_engl.html 2003
[2]蔡松雨, 工業材料雜誌 2010;284:101
[3]H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya , "Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell", Nature 1976;261:402
[4]B. O’regan, M. Gratzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films", Nature 1991;353:737
[5]C.J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gratzel, "Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications", Journal of the American Ceramic Society 1997;80:3157
[6]李佳樺, 工業材料雜誌 2011;292:94
[7]X. Bokhimi, A. Morales, M. Aguilar, J.A. Toledo-Antonio, F. Pedraza, "Local order in titania polymorphs", International Journal of Hydrogen Energy 2001;26:1279
[8] D. Reyes-Coronado, G. Rodr’ıguez-Gattorno, M.E.-Pesqueira, C. Cab, R. de Coss1, G. Oskam, "Phase-pure TiO2 nanoparticles: anatase, brookite and rutile", Nanotechnology 2008;19:145
[9]A.N. Banerjee, "The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures", Nanotechnology, Science and Applications 2011;4:35
[10] M. Koelsch, S. Cassaignon, C. Ta Thanh Minh, J.-F. Guillemoles, J.-P. Jolivet, "Electrochemical comparative study of titania (anatase, brookite and rutile) nanoparticles synthesized in aqueous medium", Thin Solid Films 2004;451:86
[11] N.G. Park, J. van de Lagemaat, A.J. Frank, "Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells", The Journal of Physical Chemistry B 2000;104:8989
[12]G.P. Smestad, "Education and solar conversion: Demonstrating electron transfer", Solar Energy Materials and Solar Cells 1998;55:157
[13] 徐志宇, 幾丁聚醣/蒙脫石複合材料之支架備製, 國立台灣大學材料與工程學研究所, 碩士論文, 2003
[14] http://www.chemtech.com.tw/Column.php?mode=detail&id=38
[15] http://www.aero.fcu.edu.tw/media/nero-composites.htm
[16] K. F. Lin; S. C. Lin ; A. T. Chien; C. C. Hsieh; M. H. Yen; C. S. Lin; W. Y. Chiu; Y. H. Lee, " Exfoliation of montmorillonite by the insertion of disklike micelles via the soap-free emulsion polymerization of methyl methacrylate” J. Polym. Sci., Part A: Polym. Chem. 2006;31:1755
[17] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R.E. Smalley, ”C60: Buckminsterfullerene” Nature 1985:318:162
[18] S. Iijima,” Helical microtubules of graphitic carbon” Nature, 1991;354:56
[19] T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, “Structure and electronic properties of carbon nanotubes“ J. Phys. Chem. B, 2000;104
[20] 赵兴中,技術與市場, 2009;11:1006
[21] 王麗萍、蔡松雨,工業材料雜誌 2010;280:143
[22] M. Gratzel, "Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells", Inorganic Chemistry 2005;44(20):6841
[23] 蔡松雨,工業材料雜誌 2007:241:103
[24] M.K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Gratzel, "Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell", The Journal of Physical Chemistry B 2003;107:8981
[25] 張仕欣, 工業材料雜誌 2005;225:91
[26] 王麗萍、蔡松雨,工業材料雜誌 2010;280:143
[27] 閔庭輝、姬梁文、陳文瑞、陳胤維、邱騰震,科儀新知 2007;5(28):22
[28] 葉素敏,工業材料雜誌 2007;248:162
[29] 童永樑,工業材料雜誌 2008;255:109
[30] S.W. Rhee, W. Kwon, "Key technological elements in dye-sensitized solar cells (DSC)", Korean Journal of Chemical Engineering 2011;28:1481
[31] I.A. Courtney, J.R. Dahn, "Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites", Journal of The Electrochemical Society 1997;144(6):2045
[32] 李佳樺 工業材料雜誌 2011;292:94
[33] A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E. W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Gratzel, "Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency", Science 2011;334:629
[34] X. Chen, S.S. Mao, "Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications", Chemical Reviews 2007;107:2891
[35] G. Wolfbauer, A. M. Bond, J. C. Eklund, and D. R. MacFarlane, “A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells“, Sol. Energy Mater. Sol. Cells 2001;70:85
[36] S. Gunes, N. S. Sariciftci, ”Hybrid solar cells”, Inorganica Chimica Acta, 2008;361:581
[37] Ana F. Nogueira, James R. Durrant, Marco A. De Paoli; ”Dye-sensitized nanocrystalline solar cells employing a polymer electrolyte”, Adv. Mater. 2001;13:11
[38] E. Stathatos, P. Lianos, U. L. Stangar, B. Orel, “In Situ Resonance Raman Microspectroscopy of a Solid-State Dye-Sensitized Photoelectrochemical Cell“, Adv. Mater. 2002;14:5:354
[39] T. C. Wei, C. C. Wan, Y. Y. Wang,“ Immobilization of poly (N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass and its application in dye-sensitized solar cells“ Sol. Energy Mater. Sol. Cells, 2007;91:1892
[40] P. J. Li, J. H. Wu, M. L. Huang, S. C. Hao, Z. Lan, Q. H. Li, S. J. Kang, “The application of P(MMA-co-MAA)/PEG polyblend gel electrolyte in quasi-solid state dye-sensitized solar cell at higher temperature“, Electrochim. Acta, 2007;53:903
[41] P. Petrov, I. Berlinova, C. B. Tsvetanov, S. Rosselli, A. Schmid, A. B. Zilaei, T. Miteva, M. Durr, A. Yasuda, G. Nelles, “High‐Molecular‐Weight Polyoxirane Copolymers and their Use in High‐Performance Dye‐Sensitized Solar Cells“ Macromol. Mater. Eng. 2008;293:598
[42] P. Wang, S.M. Zakeeruddin, J.E. Moser, M. Gratzel, ”A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte” J. Phys. Chem. B 2003;107:13280
[43] M. Gratzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells“ J. Photochem. Photobiol. A-Chem 2004;164:3
[44] L.M. Goncalves , V.Z. Bermudez , H.A. Ribeiro, A.M. Mendes, "Dye-sensitized solar cells: A safe bet for the future", Energy & Environmental Science 2008;1:655
[45] www.autolab-instruments.com
[46] T. Mitsumori, I. M. Craig, I. B. Martini, B. J. Schwartz, F. Wudl, “Synthesis and color tuning properties of blue highly fluorescent vinyl polymers containing a pendant pyrrolopyridazine“, Macromolecules 2005;38:4698
[47] A. A. Farah, W. J. Pietro, ”Telechelic poly(ε-caprolactones) with tethered mixed ligand ruthenium(II) chromophores”, Canadian Journal of Chemistry, 2004;82:595
[48] C. L. Donnicia, D. H. M. Filhoa, L. L. C. Moreiraa, G. T. Dos Reisa, E. S. Cordeiro, I. Ma. F. de Oliveira, S. Carvalho, E. B. Paniago, ” Synthesis of the Novel 4,4-and 6,6-Dihydroxamic-2,2-Bipyridines and Improved Routes to 4,4-and 6,6-Substituted-2,2-Bipyridines and Mono-N-Oxide-2,2-Bipyridine”, J. Braz. Chem. Soc. 1998;9:455
[49] L. D. Ciana, W. J. Dressick, A. Von Zelewsky, ”Synthesis of 4,4′-divinyl-2,2′-bipyridine”, J. Heterocyclic Chem. 1990;27:163
[50] Q. Wang, J.-E. Moser, M. Gratzel, ” Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells”, J. Phys. Chem. B., 2005;109:14945
[51] K. M. Lee, V. Suryanarayanan, K. C. Ho, ”A photo-physical and electrochemical impedance spectroscopy study on the quasi-solid state dye-sensitized solar cells based on poly(vinylidene fluoride-co-hexafluoropropylene)”, Journal of Power Source 2008;185:1605
[52] M. Zistler, P. Wachter, P. Wasserscheid, D. Gerhard, A. Hinsch, R. Sastrawan, H. J. Gores, “Comparison of electrochemical methods for triiodide diffusion coefficient measurements and observation of non-Stokesian diffusion behaviour in binary mixtures of two ionic liquids“, Electrochim. Acta. 2006;52:161
[53] 劉耕硯.可交聯型釕金屬錯合物在染料敏化太陽能電池上的合成與應用. 博士論文,國立台灣大學,2011
[54] 張舜翔. 帶丙烯酸基離子液體單體在染料敏化太陽能電池上的應用. 碩士論文,國立台灣大學, 2009
[55] http://www.chem.ucla.edu/~webspectra/NotesOnSolvents.html.
[56] J. A. Raymond, J. B. Jonathan, G. Lee, P. Manuel, ”1H chemical shifts in NMR: Part 23, the effect of dimethyl sulphoxide versus chloroform solvent on 1H chemical shifts” Magn. Reson. Chem. 2006;44:491
[57] 蔡竣凱.脫層蒙脫石與二氧化鈦奈米複合材料之研製及其在固態染料敏化太陽能電池之應用. 碩士論文,國立台灣大學,2014
[58] 程宥鈞 以陰離子和陽離子脫層蒙脫石製備離子液體複合材料之製程及阻抗分析. 碩士論文,國立台灣大學,2013


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文