跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/24 11:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳致融
研究生(外文):Chih-Rong Chen
論文名稱:奈米懸浮液中的光學自聚焦效應及半整數角動量旋渦光在自聚焦光折變晶體行為之研究
論文名稱(外文):Optical self-focusing effect in nano-suspension and half-charge vortex light beam in a self-focusing photo refractive crystal
指導教授:石明豐
指導教授(外文):Ming-Feng Shih
口試委員:朱士維闕志鴻董成淵江宏仁
口試日期:2014-10-30
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:英文
論文頁數:52
中文關鍵詞:自聚焦效應奈米懸浮液旋渦光
外文關鍵詞:self-focusing effectnano-suspensiontwo-phase flow
相關次數:
  • 被引用被引用:0
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文討論在奈米懸浮液中的光學非線性效應以及旋渦光在自聚焦晶體內的行為。在非線性光學中,物質的折射率隨著入射光的強度而改變時,物質會呈現凸(凹)透鏡的效應,影響入射光的相位分佈進而改變其傳播的行為,稱做光學的自聚(散)焦效應。自聚焦效應的物理成因有很多,可以來自在晶體內產生的高階電偶極、介質吸收入射光產生溫度的上升…等。
我們發展了一套光學量測技術來測量奈米懸浮液中的光學非線性效應,一道強的幫浦光入射樣本,而另一道探測光用干涉儀來量測相位,幫浦光局部的加熱樣本形成一個溫度場,奈米粒子被溫度梯度場驅動而重新分布,這個現象稱做Soret效應或稱做熱泳,熱泳廣泛的發生及應用在有溫差的混合物中,例如在海洋的對流、星球內部的流動、長晶、分離原油…等。這套高靈敏度的系統可以量測溫差約0.06 ℃時奈米粒子濃度以及溫度的改變,而在本文的研究中,我們發現在聚苯乙烯(Polystyrene)奈米小球的吸收會隨著奈米球的直徑減小而增加,當奈米球小於30奈米的時候這個效應會明顯的加熱樣本。
在奈米懸浮液的非線性之研究當中,我們設計了一種全新的操控方式來控制奈米粒子的分佈。用光驅動奈米粒子有三個機制:一個是光的吸收而局部加熱樣本,形成熱泳;一個是光場的梯度造成粒子不均勻的偶極力而驅動奈米粒子,光鉗;第三種是奈米粒子藉由散射入射光而得到動量的散射力。前兩種機制已經發展許久,甚至在適當的條件下可以形成空間光孤子(optical spatial soliton),但是藉由散射力操控奈米粒子的研究卻很少。本文中我們實現了用光的散射力推動奈米粒子,藉由奈米粒子與溶液的黏滯力推動出流場分布,最後藉由流場重新影響奈米粒子的濃度分布,形成光的自聚焦效應。我們觀察到這個自聚焦的光會達到一個穩定態,代表由光推動出來的流場而建立的折射率分布是穩定不隨時間變化的,也就是說,光產生波導,而後波導又回頭影響入射光,達到一個自洽解。在入射光是200 mW的條件下,折射率增加 ,光推動出來的流速大約30 μm/s,而當入射光增強到1.6 W時,我們觀察到自聚焦效應過強變得不穩定,使自聚焦的光分裂成很多顆光孤子,這是高階光孤子的效應(high order solitons)。然而這個非線性的動態過程目前還不了解,是未來可以繼續研究的方向之一。
環型旋渦(vortex)是自然界普遍存在的有趣現象,由於對光的操控與分析非常成熟,旋渦光(vortex light beam)成為非常適合研究旋渦傳波特性的一個方式。本文中,我們研究半整數角動量的旋渦光在自聚焦晶體中的傳播行為,因為其特殊的螺旋相位以及強烈的軸向不穩定性(Azimuthal Instability),在晶體中半整數旋渦光分裂成三顆光斑,而後隨著光斑與非線性晶體的交互作用,其中兩個相位相近的光斑會合併再一起,實驗觀測與理論結果相當吻合。

This dissertation presents the research on optical self-focusing effect in nano-suspension and the half-charge vortex light beam in a self-focusing photorefractive crystal. In nonlinear optics, the dependence of the refractive index of a media on the input light intensity gives rise to the media focusing or defocusing the input light beam. This nonlinearity may come from different physical origins. In this research, we seek for a novel physical interaction among light, nanoparticles, and flow to realize the optical self-focusing effect in the nano-suspension.
In the nano-suspension, solvent (or solute) absorbs the light causing temperature gradient and it drives nanoparticles to migrate to the region with higher or lower temperature. This phenomena is photophoresis, or Soret effect. In this dissertation, we establish a new method to investigate the optical nonlinear effect in the nano-suspension. In this method, a pump laser beam is to induce the temperature gradient causing the nanoparticles to move, and a weak probe laser beam is used to measure the phase shift at the pump beam center by using a very sensitive Mach-Zehnder interferometer. Due to the high sensitivity of the interferometer, we can measure the thermal effect and the Soret coefficient when the temperature change is very low, as low as 0.06 ℃.
We present a new way to concentrate the distribution of nanoparticles by a light beam. This redistribution nanoparticles then can cause self-focusing effect for the light beam itself. The nanoparticles are driven by the laser beam via Rayleigh scattering and drag the surrounding water molecules to move forward with the particles and then create a flow. Due to the scattering loss, the velocity of nanoparticles decrease along the propagation of the light beam causing nanoparticles accumulated longitudinally in the channel of the light beam. This behavior is similar to a highway “traffic jam”. In this scenario, we observe stable self-focusing effect in the nano-suspension. When the input power is of 200 mW, the refractive index increases by and the velocity of laser-driven flow is about 30 μm/s. As the input power increasing to 1.6 W, the self-focusing nonlinearity is too strong causing the light beam unstable and breaks the light beam into many filaments. This behavior is similar to high order soliton effect.
Vortex is an interesting phenomenon appearing in many branches of physics. Due to the simplicity of experiment, optical vortex light beam is a suitable tool to study the properties of vortex in nonlinear systems. In this dissertation, we study the half-charge vortex light beam in a self-focusing medium. We observed the half-charge vortex light beam is unstable in propagation and breaks up into three filaments due to the azimuthal instability. After the three filaments are formed, they then interact according to their relative phases and relative distances. In the end, the two filaments with closer phases fuse into one filament. This observation is in good agreement with numerical simulation and perturbation analysis.

致謝詞 ii
中文摘要 iii
Abstract v
List of Figures ix
List of Tables xi
Chapter 1 Introduction 1
1.1 Overview of self-focusing effect……………………………………………..1
1.2 Background knowledge of nano-suspension……………………….…………2
1.3 Background knowledge of vortex light beam…………....….………………..4
1.4 Outline of the thesis…………………………....………………….…………..6
Chapter 2 All-optical pump and probe measurement of thermophoresis in nano-suspension system 8
2.1 Introduction…………………………………………………………………..8
2.2 Method………………………………………………………….…………...10
2.3 Experimental setup and calibration……………………………….…………14
2.4 Results and discussions…………………………………….………………..17
2.5 Summary……………………………………….……………………………21
Chapter 3 Symbiotic flow-trapping of nanoparticles and induced focusing 22
3.1 Introduction…………………………………………………………………22
3.2 Design and experimental setup…………………….………………………...24
3.3 Observation results and discussion…………………….………………...….27
3.4 Conclusions………………………………………………………………… 33
Chapter 4 Propagation of a topologically half-charge vortex light beam in a self-focusing photorefractive medium 36
4.1 Introduction…………………………………………………………………36
4.2 Experimental setups………………………………….……………………...37
4.3 Numerical simulations………………………………………………………39
4.4 Perturbation analysis…………………………….…………………………..41
4.5 Filaments interactions…………………………….…………………………42
4.6 Conclusions…………………………………………………………………44
Chapter 5 Conclusions and future works 46
Appendix 47
Bibliography 48


Bibliography
[01]P. A. Franken, A. E. Hill, C. Peters, and G. Weinreich, "Generation of optical harmonics," Phys. Rev. Lett. 7, 118 (1961).
[02]E. Esarey, P. Sprangle, J. Krall, Member and A. Ting, "Self-focusing and guiding of short laser pulses in ionizing gases and plasmas," IEEE J. Quant. Electron. 33, 1879 (1997).
[03]D.N. Christodoulides, T.H. Coskun, M. Mitchell, and M. Segev, "Theory of incoherent self-focusing in biased photorefractive media," Phys. Rev. Lett. 78, 646 (1997).
[04]M. Peccianti, K. A. Brzdkiewicz, and G. Assanto, "Nonlocal spatial soliton interactions in nematic liquid crystals," Opt. Lett. 27, 1460-1462 (2002).
[05]A. S. Kewitsch and A. Yariv, "Self-focusing and self-trapping of optical beams upon photopolymerization," Opt. Lett. 21, 24-26 (1996).
[06]R. W. Boyd. Nonlinear optics. CA: Academic, San Diego, 1992.
[07]C. Rotschild, Oren Cohen, O. Manela, and M. Segev, "Solitons in nonlinear media with an infinite range of nonlocality: first observation of coherent elliptic solitons and of vortex-ring solitons," Phys. Rev. Lett. 95, 213904 (2005).
[08]E. P. Orlov, "Possible thermal self-focusing of light beams influencing chemical reactions," Kvantovaya Elekron. 10, 2085 (1983).
[09]G.C. Duree, J.L. Shultz, G.J. Salamo, M. Segev, A. Yariv, B. Crosignani, P.D. Porto, E.J. Sharp, and R.R. Neurgaonkar, " Observation of self-trapping of an optical beam due to the photorefractive effect," Phys. Rev. Lett. 71, 533 (1993).
[10]V. I. Bespalov and V. I. Talanov, "Filamentary structure of light beams in nonlinear liquid." JETP Lett. 3 307 (1996).
[11]A. Ashkin, J.M. Dziedzic, P.W. Smith, "Continuous-wave self-focusing and self-trapping of light," Opt. Lett. 7, 276-278 (1982).
[12]M.F. Shih, P. Leach, and M. Segev, M.H. Garrett, G. Salamo, G.C. Valley, "Two-dimensional steady-state photorefractivescreening solitons," Opt. Lett. 21, 324 (1996).
[13]Z. Chen, M. Shih, M. Segev, D.W. Wilson, R.E. Muller and P.D. Maker, "Steady-state vortex-screening solitons formed in biased photorefractive media," Opt. Lett. 22, 1751 (1997).
[14]V. Tikhonenko, J Christou, and B.L. Davies, "Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium," J. Opt. Soc. Am. B 12, 2046 (1995)
[15]A. Wurger, "Thermal non-equilibrium transport in colloids," Rep. Prog. Phys. 73, 126601 (2010).
[16]W.J. Firth, and D.V. Skryabin, "Optical solitons carrying orbital angular momentum," Phys. Rev. Lett. 79, 2450-2453 (1997).
[17]M. Padgett and L. Allen, "Light with a twist in its tail," Contemporary Phys. 41, 275-285 (2000).
[18]I. V. Basistiy, V. A. Pas ko, V. V. Slyusar, M. S. Soskin, and M. V. Vasnetsov, "Synthesis and analysis of optical vortices with fractional topological charges," J. Opt. A: Pure Appl. Opt. 6, S166-S169 (2004).
[19]C. Soret, Arch. Geneve. 3, 48 (1879).
[20]W. Weinberger, "The physics of the solar pond," Sol. Energy. 8, 45-56 (1964).
[21]M. Gregg, "The microstructure of the ocean," Sci. Am. 228, 65-77 (1973).
[22]E.A. Spiegel, "Convection in Stars: special effects," Annu. Rev. Astron. Astrophys 10, 261-304 (1984).
[23]L.J.M. Kempers, "A comprehensive thermodynamic theory of the Soret effect in a multicomponent gas, liquid, or solid," J. Chem. Phys. 115, 6330-6341 (2001).
[24]M. C. Cross and P. C. Honenberg, "Pattern formation outside of equilibrium," Rev. Mod. Phys. 65, 851-1112 (1993).
[25]M. Reichl, M. Herzog, A. Gotz, D. Braun, "Why charged molecules move across a temperature gradient," Phys. Rev. Lett. 112, 198101 (2014).
[26]E. E. Berkau and G.T. Fisher, "Soret cell diffusion in two anion-two cationsalt Solutions," Inc. J. Hear Mass Transfer. 7, 253-255 (1964).
[27]R. Piazza, "Thermal diffusion in ionic micellar solutions," Philos. Mag. 83, 2067 (2003).
[28]W. Kohler and R. Schafer, "Polymer analysis by thermal-diffusion forced Rayleigh scattering," Advances in Polymer Science 151, 1-59 (2000).
[29]P. Polyakov and S. Wiegand, "Investigation of the Soret effect in aqueous and non-aqueous mixtures by the thermal lens thechnique," Phys. Chem. Chem. Phys. 11, 864 (2009).
[30]R. Rusconi, L. Isa and R. Piazza, "Thermal-lensing measurement of particle thermophoresis in aqueous dispersions," J. Opt. Soc. Am. B. 21, 605-616 (2004).
[31]S.J. Sheldon, L.V. Knight, and J.M. Thorne, "Laser-induced thermal lens effect: a new theoretical model," Appl. Opt. 21, 1663-1669 (1982).
[32]M. Braibanti, D. Vigolo and R. Piazza, "Does thermophoretic mobility depend on particle size? Marco," Phys. Rev. Lett. 100, 108303 (2008).
[33]S. Alves, A. Bourdon and A.M. F. Neto, "Generalization of the thermal lens model formalism to account for thermodiffusion in a single-beam Z-scan experiment: determination of the Soret coefficient," J. Opt. Soc. Am. B. 20, 713-718 (2003).
[34]H. Ning, R. Kita and S. Wiegand, Progr. Colloid Polym. Sci. 133, 111-115 (2006)
[35]R.W. Bowman, M.J. Padgett, "Optical trapping and binding Reports on progress in physics." Phys. Soc. 76, 026401(2013).
[36]W.M. Lee, R. El-Ganainy, D.N. Christodoulides, K. Dholakia, E.M. Wright, "Nonlinear optical response of colloidal suspension," Opt. Express 17, 10277-10289 (2009).
[37]M. Anyfantakis, B. Loppinet, G. Fytas, S. Pispas, "Optical spatial solitons and modulation instabilities in transparent entangled polymer solutions," Opt. Lett. 33, 2839-2841 (2008).
[38]D.N.C. R. El-Ganainy, C. Rotschild, M. Segev, "Soliton dynamics and self-induced transparency in nonlinear nanosuspensions," Opt. Express 15, 2702-2712 (2007).
[39]R. El-Ganainy, D.N. Christodoulides, Z.H. Musslimani, C. Rotschild, M. Segev, "Optical beam instabilities in nonlinear nanosuspensions," Opt. Lett. 32, 3285-3287 (2007).
[40]D.G. Grier, "A revolution in optical manipulation," Nature 424, 810 (2003).
[41]D.B. Phillips, M.J. Padgett, S. Hanna, Y.-L.D. Ho, D.M. Carberry, M.J. Miles, S.H. Simpson, "Shape-induced force fields in optical trapping, " Nature Photonics 8, 400-405 (2014).
[42]R. Omori, T. Kobayashi, A. Suzuki, "Observation of a single beam gradient force optical trap for dielectric particles," Opt. Lett. 22, 816-818 (1986).
[43]S. Fardad, M.S. Mills, P. Zhang, W. Man, Z. Chen, D.N. Christodoulides, "Interactions between self-channeled optical beams in soft-matter systems with artificial nonlinearities," Opt. Lett. 38, 3585-3587 (2013).
[44]W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D.N. Christodoulides, Z. Chen, "Optical nonlinearities and enhanced light transmission in soft-matter systems," Phys. Rev. Lett. 111, 218302 (2013).
[45]R. Rusconi, L. Isa, R. Piazza, "Thermal-lensing measurement of particle thermophoresis in aqueous dispersions," J. Opt. Soc. Am. B 21, 605 (2004).
[46]Y. Lamhot, A. Barak, O. Peleg, M. Segev, "Self-trapping of optical beams through thermophoresis," Phys. Rev. Lett. 98, 203902 (2010).
[47]M. Reichl, M. Herzog, A. Gotz, D. Braun, "Why charged molecules move across a temperature gradient," Phys. Rev. Lett. 112, 198101 (2014).
[48]S. Kawata, T. Tani, "Optically driven Mie particles in an evanescent field along a channeled waveguide," Opt. Lett. 21, 1768 (1996).
[49]T. Imasaka, "A new tool for separation of particles," Optical chromatography 26, 5 (1998).
[50]J. Chen1, J. Ng, Z. Lin3 and C. T. Chan2, "Optical pulling force," nature photonics. 5, 531 (2011).
[51]E. Greenfield, J. Nemirovsky, R. El-Ganainy, D.N. Christodoulides, M. Segev, "Shockwave based nonlinear optical manipulation in densely scattering opaque suspensions," Opt. Express 21, 15086-15092 (2013).
[52]G. Blatter, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, "Vortices in high-temperature superconductors," Rev. Mod. Phys. 66, 1125-1388 (1994).
[53]T. F. Fric, and A. Roshko, "Vortical structure in the wake of a transverse jet," J. Fluid Mech. 279, 1-47 (1994).
[54]C. N. Weiler, T. W. Neely, D. R. Scherer, A. S. Bradley, M. J. Davis, and B. P. Anderson, "Spontaneous vortices in the formation of Bose–Einstein condensates," Nature 455, 948-951 (2008).
[55]A. Bandyopadhyay, and R. P. Singh, "Wigner distribution of elliptical quantum optical vortex," Opt. Commun. 284, 256-261 (2011).
[56]J. Leach, E. Yao, and M. J. Padgett, "Observation of the vortex structure of a non-integer vortex beam," New J. Phys. 6, 71-71 (2004).
[57]L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[58]N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, "Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner," Opt. Lett. 22, 52-54 (1997).
[59]Z. X. Wang, N. Zhang, and X. C. Yuan, "High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication," Opt. Express 19, 482-492 (2011).
[60]S. Furhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, "Spiral phase contrast imaging in microscopy," Opt. Express 13, 689-694 (2005).
[61]G. A. Swartzlander, and C. T. Law, "Optical vortex solitons observed in Kerr nonlinear media," Phys. Rev. Lett. 69, 2503-2506 (1992).
[62]Z. G. Chen, M. F. Shih, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, "Steady-state vortex-screening solitons formed in biased photorefractive media," Opt. Lett. 22, 1751-1753 (1997).
[63]V. Tikhonenko, J. Christou, and B. Lutherdaves, "Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium," J. Opt. Soc. Am. B 12, 2046-2052 (1995).
[64]J. P. Torres, J. M. Soto-Crespo, L. Torner, and D. V. Petrov, "Solitary-wave vortices in quadratic nonlinear media," J. Opt. Soc. Am. B 15, 625-627 (1998).
[65]Y. V. Kartashov, V. A. Vysloukh, and L. Torner, "Stability of vortex solitons in thermal nonlinear media with cylindrical symmetry," Opt. Express 15, 9378-9384 (2007).
[66]W. J. Firth, and D. V. Skryabin, "Optical solitons carrying orbital angular momentum," Phys. Rev. Lett. 79, 2450-2453 (1997).
[67]C. C. Jeng, M. F. Shih, K. Motzek, and Y. Kivshar, "Partially incoherent optical vortices in self-focusing nonlinear media," Phys. Rev. Lett. 92, 043904 (2004).
[68]S. Y. Chen, T. C. Lo, and M. F. Shih, "Stabilization of optical vortices in noninstantaneous self-focusing medium by small rotating intensity modulation," Opt. Express 15, 13689-13694 (2007).
[69]M. V. Berry, "Optical vortices evolving from helicoidal integer and fractional phase steps," J. Opt. A 6, 259-268 (2004).
[70]I. V. Basistiy, V. A. Pas ko, V. V. Slyusar, M. S. Soskin, and M. V. Vasnetsov, "Synthesis and analysis of optical vortices with fractional topological charges," J. Opt. A: Pure Appl. Opt. 6, S166-S169 (2004).
[71]I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, "Optical wave-front dislocations and their properties," Opt. Commun. 119, 604-612 (1995).
[72]J. B. GOTTE, S. Franke-Arnold, R. Zambrini, and S. M. Barnett, "Quantum formulation of fractional orbital angular momentum," J. Mod. Opt. 54, 1723-1738 (2007).
[73]M. A. Molchan, E. V. Doktorov, and R. A. Vlasov, "Propagation of fractional charge Laguerre-Gaussian light beams in moving defocusing media with thermal nonlinearity," J. Opt. A 11, 015706 (2009).
[74]M. Segev, M. F. Shih, and G. C. Valley, "Photorefractive screening solitons of high and low intensity," J. Opt. Soc. Am. B 13, 706-718 (1996).
[75]B. Crosignani, P. DiPorto, A. Degasperis, M. Segev, and S. Trillo, "Three-dimensional optical beam propagation and solitons in photorefractive crystals," J. Opt. Soc. Am. B 14, 3078-3090 (1997).
[76]Notice there is a small difference between the applied nonlinearity strength in the simulation and in the experiment. This is due to the possible imhomogeneity of electro-optic coefficient of the crystal, or not exactly the same light beam sizes in simulation and in experiment.
[77]A. V. Buryak, Y. S. Kivshar, M. F. Shih, and M. Segev, "Induced coherence and stable soliton spiraling," Phys. Rev. Lett. 82, 81-84 (1999).
[78]M. F. Shih, M. Segev, and G. Salamo, "Three-dimensional spiraling of interacting spatial solitons," Phys. Rev. Lett. 78, 2551-2554 (1997).
[79]R.W. Bowman and M.J Padgett, "Optical trapping and binding," Rep. Prog. Phys. 76, 026401 (2013).
[80]H. M. Vollebregt, R. G. M. van der Sman and R. M. Boom, "Suspension flow modelling in particle migration and microfiltration," Soft matter 6, 6052-6064 (2010).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top