跳到主要內容

臺灣博碩士論文加值系統

(3.236.28.137) 您好!臺灣時間:2021/07/25 20:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林裕軒
研究生(外文):Yu-Hsuan Lin
論文名稱:以最佳化影像相減法尋找類星體
論文名稱(外文):Searching Quasars with Optimal Image Subtraction Method
指導教授:闕志鴻
口試委員:陳文屏林俐暉
口試日期:2013-01-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:英文
論文頁數:64
中文關鍵詞:類星體最佳化影像相減
外文關鍵詞:AGNquasarOISblack holegalaxyPanSTARRS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本文將介紹利用最佳化影像相減 (OIS) 法搜尋可能受到星系團的重 力透鏡作用的類星體。利用互動式數據語言 (IDL) 軟體編譯 OIS 運算
程式來找出同一望遠鏡、同一濾鏡、同一天空但不同觀測時間及條件
的兩張影像之間觀測條件的差異,並使其趨於一致。將兩張影像相減,
並檢查剩下的影像,可以此觀測星體的光度變化,進而篩選出具有亮 度變化的星體。即為可能的類星體。本文將觀測普朗克 (PLANCK) 太 空望遠鏡利用蘇尼亞耶夫 -澤爾多維奇效應 (SZeffect) 找出的星系團附 近的天空,並重複利用 OIS 運算法於泛星 (Pan-STARRS) 望遠鏡所觀
測的不同時間及觀測條件的影像,搜尋具有光度變化的類星體。


Abstract
In this thesis, we use the Optimal Image Subtraction (OIS) method to search for the candidates of quasi-stellar objects (quasars) lensed by galaxy clusters. We use the OIS algorithm in Interactive Data Language(IDL) code to figure out the optimal point spread functions between two images from the same telescope, same filter and same position but differ in time and the seeing conditions to make their seeing almost the same. By subtracting the two images and examining the residual images, we can identify objects vary in brightness or position. We select the objects nearby the PLANCK cluster candidates detected by the Sunyaev–Zel’dovich effect (SZ effect), and use theOISmethodontherepeatedlyobservedPan-STARRSimagestolookfor quasars vary in brightness. With the new OIS method, we also improve the OISmethodoriginallyadoptedbyPan-STARRScollaboration.


誌謝 v
摘要 vii
Abstract ix
1 INTRODUCTION 1

2 OPTIMAL IMAGE SUBTRACTION METHOD 3
2.1 Introduction 3
2.2 Stamp Selection and Scaling Calibration 5
2.2.1 Stamp Selection 5
2.2.2 Rule Out Bad Stamps 6
2.2.3 Scaling Calibration 7
2.3 Basis Vectors 7
2.3.1 Introduction 7
2.3.2 Gaussian Components Basis 8
2.3.3 Delta Function Basis 9
2.4 Convolution Kernel 10
2.4.1 Constant Kernel 10
2.4.2 Space-varying Kernel 10
2.4.3 Constant Photometric 11
2.4.4 Reject Bad Fitting Stamps 12
2.5 Summary 13

3 APPLICATIONINPAN-STARRSIMAGES 15
3.1 ThePan-STARRS(PS1)Images 15
3.1.1 Introduction 15
3.1.2 GapsandBadPixels 16
3.2 Pre-procedure before the OIS Method 16
3.2.1 Rule out the Bad Images 16
3.2.2 Automatically Reference Image Selection 17
3.2.3 Identify and Mask Saturated Pixels and Hot Pixels 17
3.3 The OIS Method on the Pre-Processed Images 18
3.4 Post-procedure after the OIS Method 19
3.4.1 Retrieve the Saturated Pixels on the Residual Images 19
3.5 Summary 21

4 RESIDUAL IMAGE ANALYSIS AND THE APERTURE PHOTOMETRY 23
4.1 Aperture Photometry 23
4.2 The Variability 24
4.3 MoreInformation Plotting for Advanced Examining 25
4.3.1 Basic Information 25
4.3.2 The Variability 26
4.3.3 Images of the Object 26
4.3.4 Curve of Flux Distribution 27
4.4 Summary 30

5 VALID QUASARS DETECTION 31
5.1 Stochastic Targetson Quasars Catalogue 31
5.2 Quasars Nearby the PLANCKSZ Clusters 31
5.3 Strong Lensed Quasars 32
5.3.1 Einstein Cross 32
5.3.2 Twin Quasars 33

6 QUASAR CANDIDATES SEARCHING NEARBY THE PLANCKSZCLUSTERS 35
6.1 Validation 35
6.2 Position Error 36
6.3 Conclusion 37

7 CONCLUSIONS 39
7.1 Summary 39
7.2 Future Prospects39

A TYPES OF ANALYSISPRO FILES 41
B VARYING OBJECT(QUASAR) CANDIDATES 47
BIBLIOGRAPHY 63

Bibliography
[1] C.Alard,R.H.Lupton.,AMethodforOptimalImageSubtraction.1997,arXiv:astroph/9712287.
[2] C.Alard.,Imagesubtractionusingaspace-varyingkernel.2000A&AS..144..363A.
[3] J.P.Miller, Optimal Image Subtraction Method: Summary Derivations, Applications, andPubliclySharedApplicationUsingIDL.2008,PASP..120..449M.
[4] J.P.Miller, A method of optimal image subtraction: development of the mathematics and software for general use in astronomical research. 2008, http://researchonline.jcu.edu.au/2067/.
[5] J.-B.Melin,N.Aghanim,etal.,AComparisonofAlgorithmsfortheConstructionof SZClusterCatalogues.2012,arXiv:1210.1416v1.
[6] P.A.R.Ade,N.Aghanim,etal.,Planckearlyresults.VIII.Theall-skyearlySunyaevZeldovichclustersample.2011,A&A536,A8.
[7] P. A. R. Ade, N. Aghanim, et al., Planck 2013 results. XXIX. Planck catalogue of Sunyaev–Zeldovichsources.2013,arXiv:1303.5089v1.
[8] H.Meusinger,A.Hinze,etal.,Spectralvariabilityofquasarsfrommulti-epochphotometricdataintheSloanDigitalSkySurveyStripe82.2010,arXiv:1010.5386v1.
[9] H. Ebeling, A.C. Edge, et al., X-ray selected galaxy clusters in the Pan-STARRS Medium-DeepSurvey.2013,arXiv:1303.0555.
63
[10] HUTTON, SARAH,JANE., SED & Variability Studies of AGN. 2012, http://etheses.dur.ac.uk/5566/.
[11] Brian C. Lacki, Christopher S. Kochanek, et al ., Difference Imaging of Lensed QuasarCandidatesintheSDSSSupernovaSurveyRegion.2008,SLAC-PUB-13098

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top