跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 17:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏賓逵
研究生(外文):Philander Penn Wei
論文名稱:包含石墨烯摻雜及介面修飾之高效率IGZO/有機太陽能電池
論文名稱(外文):High Performance IGZO/Organic Hybrid Solar Cells Consisting of Graphene Dopants and Surface Manipulation.
指導教授:陳永芳陳永芳引用關係
口試委員:許芳琪林泰源
口試日期:2015-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:58
中文關鍵詞:有機無機混摻太陽能電池表面修飾導電分子凝膠狀氧化銦鎵鋅石墨烯破片摻雜
外文關鍵詞:organic/inorganic hybrid solar cellssurface modificationconductive moleculesol-gel IGZOgraphene dopants
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有機太陽能電池由於製作過程簡易且成本低廉,若應用於軟性基板上,便可成為可彎曲式太陽能電池,所以是近年來太陽能電池研究的重要領域之一。
介面的性質是聚合物/金屬氧化物混摻太陽能電池的一項重要議題,在本研究的第一個主題中,以凝膠狀氧化銦鎵鋅(sol-gel IGZO)作為電子傳輸層,並選用1,4-苯基二硫醇(Benzene-1,4-dithiol,BDT)這種可溶性的導電小分子作為修飾氧化銦鎵鋅表面的特性,接著在修飾過後的氧化銦鎵鋅上以P3HT:PCBM溶於高沸點溶劑(1,2-dichlorobenzen)DCB中並且以旋轉塗佈以及慢乾的方式作為主動層,最後鍍上銀電極完成元件。研究結果發現,此種分子會提升主動層和氧化銦鎵鋅之間的相容性;能在氧化銦鎵鋅表面鍵結形成電偶極,藉由此電偶極能夠有效的加速電荷從主動層轉移到氧化銦鎵鋅且能增加電荷傳輸網路的路徑,因此能夠提升短路電流密度(Jsc)和填充因子(FF),與未經修飾過的太陽能電池元件相比,效率從3.24 %提升至3.64 %。
第二部分是將二維石墨烯(GNFs)掺雜在氧化銦鎵鋅溶液中,並同樣以主題一之方法完成原件。實驗發現掺雜適量二維石墨烯可以提升元件之短路電流密度(Jsc)與填充因子(FF),其機制是由於二維石墨烯位於氧化銦鎵鋅中並提供良好的導電性所致。


Organic solar cells have become one of the most important research area. Because of low-cost, low temperature manufacturing process and easy thickness control of organic solar cells, it is also practical to fabricate the flexible solar cells on flexible plastic substrates.
Interface property is one of the important issues in optimizing the performance of hybrid polymer/metal-oxide solar cells. In the first topic, we use sol-gel IGZO as electron transport layer, and select a soluble conductive small molecule, benzene-1,4-dithiol (BDT), to manipulate the surface property of the a-IGZO films before contacting with the polymer blend in an inverted hybrid solar cell configuration. This conductive molecule enhances the compatibility between polymer blend and metal-oxide. Due to the formation a layer of dipole on the surface, the charge transfer rate into the a-IGZO has been enlarged and improves the ordering of charge transport network is ehanced. As a result, there is a substantial improvement in photocurrent and fill factor leading to an enhanced power conversion efficiency of 3.64 % from 3.24 %.
In the second part, we use GNFs:a-IGZO as the electron transport layer. According to our study, with the good conductivity of GNFs:a-IGZO, charges can transfer from polymer blend to a-IGZO more effectively and subsequently travel to electrodes. As a result, there is a significant enhancement in photocurrent and fill factor leading to the enhanced power conversion efficiency.


口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xi
Chapter 1 Introduction 1
Chapter 2 Theoretical background 4
2.1 The Principle of Solar Cells 4
2.2 Solar cell parameters 8
2.2.1 Open Circuit Voltage (Voc) 8
2.2.2 Short Circuit Current (Isc) 10
2.2.3 Filling factor (FF) and Efficiency (η) 11
2.2.4 External quantum efficiency (EQE) 12
2.2.5 Device Analysis 13
2.2.6 Mobility measurement by CELIV [16] 14
2.2.7 Transient photocurrent and transient photovoltage[17][18] 15
2.3 Organic Material 16
2.4 Organic solar cells structure [20] 17
2.4.1 Bilayer heterojunction 17
2.4.2 Bulk heterojunction 18
Chapter 3 Equipment and Material Design 20
3.1 Equipment 20
3.1.1 Scanning election microscopy (SEM) 20
3.1.2 Solar Simulator and J-V Measurement System 22
3.1.3 Incident Photon-to-Current (IPCE) Efficiency 23
3.1.4 Thermal Evaporator 24
3.1.5 Atomic Force Microscopy (AFM) 25
3.1.6 X-ray photoelectron spectroscopy (XPS) 26
3.1.7 Transient photovoltage and photocurrent measurement 27
3.2 Material Design 29
3.2.1 Inorganic Material 29
3.2.2 Organic material 30
Chapter 4 Experiment Method and Result Discussion 32
4.1 Experimental Methods 32
4.1.1 Hybrid solar cells assisted by surface manipulation 32
4.1.2 Hybrid solar cells consisting of graphene dopants 33
4.2 Result and Discussion 35
4.2.1 Hybrid solar cells assisted by surface manipulation 35
4.2.2 Hybrid solar cells consisting of graphene dopants. 40
Chapter 5 Conclusion 53
REFERENCE 54



[1]Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. AdV. Funct. Mater. 11, 15 (2001).
[2]Gu‥nes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. ReV. 107, 1324 (2007).
[3]Wo‥hrle, D.; Meissner, D. AdV. Mater. 3, 129 (1991).
[4]Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Appl. Phys. Lett. 68, 3120 (1996).
[5]Theander, M.; Yartsev, A.; Zigmantas, D.; Sundstro‥m, V.; Mammo, W.; Andersson, M. R.; Ingana‥s, O. Phys. ReV. B, 61, 12957 (2000).
[6]Haugeneder, A.; Neges, M.; Kallinger, C.; Spirkl, W.; Lemmer, U.; Feldmann, J.; Scherf, U.; Harth, E.; Gu‥gel, A.; Mu‥llen, K. Phys. ReV. B, 59, 15346 (1999).
[7]Stu‥binger, T.; Bru‥tting, W. J. Appl. Phys. 90, 3632 (2001).
[8]Markov, D. E.; Amsterdam, E.; Blom, P. W. M.; Sieval, A. B.; Hummelen, J. C. J. Phys. Chem. A 109, 5266 (2005).
[9]http://www.newport.com/Introduction-to-Solar-Radiation/411919/1033/content.aspx
[10]J.Rostalski, D.Meissner, Solar Energy Materials and Solar cells, 61, 87 (2000).
[11]R. C. Gonzalez, R. E. Woods, Digital Image Processing second edition, Prentice Hall, 2002.
[12]G.A.Chamberlain: Organic solar cell: A review. Solar Cells 8, 47 (1983).
[13]D.Wohrle and D.Meissner: Organic solar cells. Adv. Mater. 3, 129 (1991).
[14]H.Hoppe et al.: Organic solar cells: An overview. J.Mater.Res. Vol.19, No.7, Jul (2004).
[15]http://pveducation.org/pvcdrom/solar-cell-operation/quantum-efficiency
[16]G. Juška, K. Arlauskas, M. Viliūnas, and J. Kočka, Phys. Rev. Letts. 84, 21 (2000).
[17]Z. Ki, F. Gao, N. C. Greenham, and C. R. McNeill, Adv. Funct. Mater, 21, 1419-1431 (2011).
[18]X. Wang, S. Karanjit, L. Zhang, H. Fong, Q. Qiao, and Z. Zhu, Appl. Phys. Lett. 98, 082114 (2011).
[19]http://www.uni-potsdam.de/u/physik/fprakti/ANLEIW4.pdf
[20]T.L.Benanti, D.Venkataraman, Photosynthesis Research, 87 (2006).
[21]P.Peumans, A.Yakimov, and S.R.Forrest: Small molecular weight organic thin-filmphotodetectors and solar cells. J.Appl.Phys.93, 3693 (2003).
[22]L.A.A.Pettersson, L.S.Roman, and O.Inganas: Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J.Appl.Phys.86, 487 (1999).
[23]C.W.Tang: Two-layer organic photovoltaic cell. Appl. Phys.Lett.48, 183 (1986).
[24]J.Rostalski and D.Meissner: Photocurrent spectroscopy for the investigation of charge carrier generation and transport mechanisms in organic p/n-junction solar cells. Sol.Energy Mater.sol.Cells 63, 37 (2000).
[25]N.S.Sariciftci, L.smilowitz, A.J.Heeger, and F.Wudl: Photoinduced electron transfer from a conducting polymer to buck-minsterfullerene. Science 258, 1474 (1992).
[26]M. Hiramoto, Y. Kishigami, and M.Yokoyama: Doping effect on the two-layer organic solar cell. Chem.Lett.19, 119 (1990).
[27]J.J.M.Halls, K.Pichler, R.H. Friend, S.C.Moratti, and A.B. Holmes:Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell. Appl. Phys. Lett. 68, 3120 (1996).
[28]J.J.M.Halls and R.H.Friend: The photovoltaic effect in a poly (p-phenylenevinylene)/perylene heterojunction.Synth.Met.85, 1307 (1997).
[29]N.S.Sariciftci, D.Braun, C.Zhang, V.I.Srdanov, A.J. Heeger, G.Stucky, and F.Wudl:Semiconducting polymerbuckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells.Appl.Phys.Lett.62, 585 (1993).
[30]L.S.Roman, W.Mammo, L.A.A.Petterson, M.R.Anderson, and O.Inganas: High quantum efficiency polythiophene/C60 photodiodes.Adv.Mater.10, 774 (1998).
[31]G.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C. Fiori, and E. Lifshin, Scanning electron microscopy and X-ray microanalysis, Plenum Press, New York and London (1981).
[32]http://en.wikipedia.org/wiki/Atomic_force_microscopy
[33]https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
[34]http://www.seallabs.com/how-xps-works.html
[35]C.Y. Lee, C.C. Chang, W.P. Shih, C.L. Dai, Thin Solid Films 518, 3992–3998 (2010).
[36]N.R. Armstrong, P.A. Veneman, E. Ratcliff, D. Placenica, M. Brumbach, Acc. Chem. Res. 42, 1748-1757 (2009).
[37]C.J. Barbec, N.S. Sariciftci, and J.C. Hummelen, Adv. Func. Mater. 11, 15-26 (2011).
[38]Y. Vaynzof, D. Kabra, L. Zhao, P.K.H. Ho, A.T.-S. Wee, and R.H. Friend, Appl. Phys. Lett. 97, 033309-1-033309-3 (2010).
[39]S. K. Hau, H. L. Yip, H. Ma, and A. K. Y. Jen, Appl. Phys. Lett. 93, 233304-1-23304-3 (2008).
[40]Y. M. Sung, F. C. Hsu, C. T. Chen, W. F. Su, and Y. F. Chen, Sol. Energy Mater. Sol. Cells, 98, 103-109 (2012).
[41]X. Bulliard, S. G. Ihn, S. Yun, Y. Kim, D. Choi, J. Y. Choi, M. Kim, M. Sim, J. H. Park, W. Choi, and K. Cho, Adv. Func. Mater. 20, 4381-4387 (2010).
[42]P. Brown, D. S. Thomas, A. Köhler, J. S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus, and R. H. Friend, Phys. Rev. B. 67, 064203 (2003).
[43]C. Y. Chou, J. S. Huang, C. H. Wu, C. Y. Lee, and C. F. Lin, Sol. Energy Mater. Sol. 93, 1608 (2009).
[44]G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nature Mater. 4, 64 (2005).
[45]B. C. O’Regan and F. Lenzmann, J. Phys. Chem. B 108, 4342 (2004).
[46]B. C. O’Regan, S. Scully, A. Mayer, E, Palomares, and J, Durrant, J. Phys. Chem. B 109, 4616 (2005).
[47]H. Snaith, A. Moule, C. Klein, K. Meerholz, R. Friend, and M. Grätzel, Nano Lett. 7, 3372 (2007).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top