跳到主要內容

臺灣博碩士論文加值系統

(3.236.28.137) 您好!臺灣時間:2021/07/25 19:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳之藩
研究生(外文):Chih-Fan Chen
論文名稱:首次結合調適光學與重力透鏡之時間延遲研究宇宙學
論文名稱(外文):FIRST USE OF ADAPTIVE OPTICS IMAGING TO CONSTRAIN COSMOLOGY WITH GRAVITATIONAL LENS TIME DELAYS
指導教授:蘇游瑄
指導教授(外文):Sherry Suyu
口試委員:梅津敬一後藤友嗣
口試委員(外文):Keiichi UmetsuTomotsugu Goto
口試日期:2015-06-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:36
中文關鍵詞:宇宙學調適性光學重力透鏡時間延遲哈伯常數
外文關鍵詞:CosmologyAOadaptive opticslensingtime delay distancehubble constant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
精準的測量哈伯常數是對於檢驗目前宇宙標準模型和指引可能出現的新物理非常重要的一環。藉由哈伯望遠鏡的影像,每個擁有時間延遲效應的強重力透鏡都可以利用哈伯望遠鏡來決定哈伯常數到一個標準差為7%的精確度。然而,因哈伯望遠鏡有使用年限,找尋替代方法來觀測重力透鏡是可預期的。調適性光學影像可以提供比哈伯望遠鏡更佳的解析度,但卻因為大氣的擾動而有未知的點擴散函數問題。為了讓調適性光學影像可以拿來研究宇宙學,我們發展出一套方法可以在重力透鏡影像中直接利用被重力所彎折的類星體重建出點擴散函數。在利用兩個已內建好宇宙學參數的模擬重力透鏡影像來測試此方法後,可以證實即使一開始不知道內建的參數,我們依然可以精確的利用模擬的影像來預測出重要的內建宇宙學參數 (時間延遲距離,外在剪力,質量分佈斜率,和總愛因斯坦半徑) 到一個標準差之內 。我們把這個方法應用在凱克天文台所觀測到的重力透鏡RXJ1131-1231調適性影像上發現,除了高簡併性因素造成無法精確的決定星系及其衛星的個別愛因斯坦半徑外,其他的重要參數都跟利用哈伯影像分析出來的結果在一個標準差之內。更重要的是,在都使用質量分布為幕次模型的前提下,利用解析度每像素為0.04角秒的調適性影像所得到的標準差比用每像素為0.05角秒的哈伯影像的標準差還小大約50%。

Accurate and precise measurements of the Hubble constant are critical for testing our current standard cosmological model and revealing possibly new physics. With Hubble Space Telescope (HST) imaging, each strong gravita- tional lens with time delays can allow one to determine the Hubble constant with an uncertainty of ~7%. However, since HST will not last forever, alter- native approaches for obtaining follow-up imagings of strong lenses are de- sirable. Adaptive-optics (AO) imaging can provide higher angular resolution than HST imaging but has an unknown point spread function (PSF) due to atmospheric distortion. To make AO imaging useful for time-delay-lens cos- mography, we develop a method to extract the unknown PSF directly from the imaging of the lensed quasar by iteratively reconstructing the PSF. In a blind test with two mock data sets with different PSFs, we are able to recover the important cosmological parameters (time-delay distance, external shear, mass profile slope, and total Einstein radius) within 1-� uncertainty. Our analysis of the Keck AO image of the strong lens system RXJ 1131�1231 shows that except for the highly degenerate Einstein radius of the main galaxy, other important parameters for cosmography agree with those based on HST imag- ing and modeling within 1-� uncertainty. Most importantly, the constraint on the model time-delay distance by using AO imaging with 0.0400 resolution is tighter by ~50% than the constraint of time-delay distance by using HST imaging with 0.0500 when a power-law mass distribution for the lens system is adopted.

1 INTRODUCTION 1
2 OBSERVATION 3
3 BASIC THEORY 4
3.1 TheTheoryofGravitationalLensingwithTimeDelay . . . . . . . . . . . . 4
3.2 ProbabilityTheory ................................ 4 3.3 MarkovchainMonteCarlo............................ 5
4 METHOD: PSF RECONSTRUCTION AND LENS MODELING 6
4.1 LightComponentsofTheLensSystem ..................... 6
4.2 DeterminingTheLightComponents ...................... 8 4.2.1 LensLightModel(Step1,2) ...................... 8 4.2.2 ArcLightModel(Step2) ........................ 9
4.2.3 AGNLightModel(Step2)........................ 11
4.3 PixelatedFineStructureofAGNLight..................... 11
4.3.1 PSF Correction for each Iteration (Inner Loop: Step 3) . . . . . . . . 13
4.3.2 Add Fine Structure into Global Structure (Inner Loop: Step 4) . . . 14
4.3.3 TheCriteriatoStopTheInnerLoop................... 15
4.4 LensModelingwithupdatedPSF........................ 15
4.4.1 Update The Blurring Matrix and The Image Covariance Matrix (OuterLoop:Step6)........................... 15
4.4.2 Lens Modeling with All Light Components (Outer loop: Step 2) . . . 16
4.4.3 TheCriteriatoStoptheOuterLoop................... 17
5 DEMONSTRATION AND BLIND TEST 18
5.1 MockImagewithaSharpandRichStructuredPSF . . . . . . . . . . . . . . 18
5.2 MockImagewithADiffusiveandNoStructuredPSF . . . . . . . . . . . . . 20
6 REAL DATA MODELING 24
6.1 ComparisonbetweenHSTImagingandAOImaging. . . . . . . . . . . . . . 24
7 SUMMARY 30
Appendices 32
Appendix A Arc and AGN mask regions 33
Bibliography 33

Bibliography

A. Agnello, B. C. Kelly, T. Treu, and P. J. Marshall. Data mining for gravitationally lensed quasars. , 448:1446–1462, April 2015. doi: 10.1093/mnras/stv037.
M. Bartelmann. TOPICAL REVIEW Gravitational lensing. Classical and Quantum Grav- ity, 27(23):233001, December 2010. doi: 10.1088/0264-9381/27/23/233001.
J. H. H. Chan, S. H. Suyu, T. Chiueh, A. More, P. J. Marshall, J. Coupon, M. Oguri, and P. Price. Chitah: Strong-gravitational-lens hunter in imaging surveys. ArXiv e-prints, November 2014.
F. Courbin, V. Chantry, Y. Revaz, D. Sluse, C. Faure, M. Tewes, E. Eulaers, M. Koleva, and et al. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. IX. Time delays, lens dynamics and baryonic fraction in HE 0435-1223. , 536:A53, December 2011. doi: 10.1051/0004-6361/201015709.
J. Dunkley, M. Bucher, P. G. Ferreira, K. Moodley, and C. Skordis. Fast and reliable Markov chain Monte Carlo technique for cosmological parameter estimation. , 356:925– 936, January 2005. doi: 10.1111/j.1365-2966.2004.08464.x.
E. Eulaers, M. Tewes, P. Magain, F. Courbin, I. Asfandiyarov, S. Ehgamberdiev, S. Rathna Kumar, C. S. Stalin, T. P. Prabhu, G. Meylan, and H. Van Winckel. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. XII. Time delays of the dou- bly lensed quasars SDSS J1206+4332 and HS 2209+1914. , 553:A121, May 2013. doi: 10.1051/0004-6361/201321140.
W. L. Freedman, B. F. Madore, V. Scowcroft, C. Burns, A. Monson, S. E. Persson, M. Seib- ert, and J. Rigby. Carnegie Hubble Program: A Mid-infrared Calibration of the Hubble Constant. , 758:24, October 2012. doi: 10.1088/0004-637X/758/1/24.
M. P. Hobson, S. L. Bridle, and O. Lahav. Combining cosmological data sets: hyperpa- rameters and Bayesian evidence. , 335:377–388, September 2002. doi: 10.1046/j.1365- 8711.2002.05614.x.
D. W. Hogg. Distance measures in cosmology. ArXiv Astrophysics e-prints, May 1999.
W. Hu. Dark Energy Probes in Light of the CMB. 339:215, August 2005.
P. J. Marshall, M. P. Hobson, S. F. Gull, and S. L. Bridle. Maximum-entropy weak lens reconstruction: improved methods and application to data. , 335:1037–1048, October 2002. doi: 10.1046/j.1365-8711.2002.05685.x.
P. J. Marshall, A. Verma, A. More, C. P. Davis, S. More, A. Kapadia, M. Parrish, C. Snyder, J. Wilcox, E. Baeten, C. Macmillan, C. Cornen, M. Baumer, E. Simpson, C. J. Lintott, D. Miller, E. Paget, R. Simpson, A. M. Smith, R. Ku ̈ng, P. Saha, T. E. Collett, and
34
BIBLIOGRAPHY 35 M. Tecza. Space Warps: I. Crowd-sourcing the Discovery of Gravitational Lenses. ArXiv
e-prints, April 2015.
A. More, A. Verma, P. J. Marshall, S. More, E. Baeten, J. Wilcox, C. Macmillan, C. Cornen, A. Kapadia, M. Parrish, C. Snyder, C. P. Davis, R. Gavazzi, C. J. Lintott, R. Simpson, D. Miller, A. M. Smith, E. Paget, P. Saha, R. Ku ̈ng, and T. E. Collett. Space Warps II. New Gravitational Lens Candidates from the CFHTLS Discovered through Citizen Science. ArXiv e-prints, April 2015.
M. Oguri and P. J. Marshall. Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys. , 405:2579–2593, July 2010. doi: 10.1111/j.1365- 2966.2010.16639.x.
S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, and et al. Measurements of Omega and Lambda from 42 High-Redshift Su- pernovae. , 517:565–586, June 1999. doi: 10.1086/307221.
Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, and et al. Planck 2015 results. XIII. Cosmological parameters. ArXiv e-prints, February 2015.
S. Rathna Kumar, M. Tewes, C. S. Stalin, F. Courbin, I. Asfandiyarov, G. Meylan, E. Eu- laers, T. P. Prabhu, P. Magain, H. Van Winckel, and S. Ehgamberdiev. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. XIV. Time delay of the dou- bly lensed quasar SDSS J1001+5027. , 557:A44, September 2013. doi: 10.1051/0004- 6361/201322116.
A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, and et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. , 116:1009–1038, September 1998. doi: 10.1086/300499.
A. G. Riess, L. Macri, S. Casertano, M. Sosey, H. Lampeitl, H. C. Ferguson, A. V. Fil- ippenko, S. W. Jha, and et al. A Redetermination of the Hubble Constant with the Hubble Space Telescope from a Differential Distance Ladder. , 699:539–563, July 2009. doi: 10.1088/0004-637X/699/1/539.
A. G. Riess, L. Macri, S. Casertano, H. Lampeitl, H. C. Ferguson, A. V. Filippenko, S. W. Jha, W. Li, and R. Chornock. A 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3. , 730:119, April 2011. doi: 10.1088/0004-637X/730/2/119.
P. Schneider, C. S. Kochanek, and J. Wambsganss. Gravitational Lensing: Strong, Weak and Micro (Springer). 2006. doi: 10.1007/978-3-540-30310-7.
J. L. S ́ersic. Atlas de galaxias australes. Cordoba, Argentina: Observatorio Astronomico, 1968, 1968.
I. I. Shapiro. Fourth Test of General Relativity. Physical Review Letters, 13:789–791, December 1964. doi: 10.1103/PhysRevLett.13.789.
S. H. Suyu and A. Halkola. The halos of satellite galaxies: the companion of the mas- sive elliptical lens SL2S J08544-0121. , 524:A94, December 2010. doi: 10.1051/0004- 6361/201015481.
BIBLIOGRAPHY 36
S. H. Suyu, P. J. Marshall, M. P. Hobson, and R. D. Blandford. A Bayesian analysis of regularized source inversions in gravitational lensing. , 371:983–998, September 2006. doi: 10.1111/j.1365-2966.2006.10733.x.
S. H. Suyu, P. J. Marshall, M. W. Auger, S. Hilbert, R. D. Blandford, L. V. E. Koopmans, C. D. Fassnacht, and T. Treu. Dissecting the Gravitational lens B1608+656. II. Precision Measurements of the Hubble Constant, Spatial Curvature, and the Dark Energy Equation of State. , 711:201–221, March 2010. doi: 10.1088/0004-637X/711/1/201.
S. H. Suyu, T. Treu, R. D. Blandford, W. L. Freedman, S. Hilbert, C. Blake, J. Braatz, F. Courbin, J. Dunkley, L. Greenhill, E. Humphreys, S. Jha, R. Kirshner, K. Y. Lo, L. Macri, B. F. Madore, P. J. Marshall, G. Meylan, J. Mould, B. Reid, M. Reid, A. Riess, D. Schlegel, V. Scowcroft, and L. Verde. The Hubble constant and new discoveries in cosmology. ArXiv e-prints (1202.4459), February 2012.
S. H. Suyu, M. W. Auger, S. Hilbert, P. J. Marshall, M. Tewes, T. Treu, C. D. Fassnacht, L. V. E. Koopmans, D. Sluse, R. D. Blandford, F. Courbin, and G. Meylan. Two Accurate Time-delay Distances from Strong Lensing: Implications for Cosmology. , 766:70, April 2013. doi: 10.1088/0004-637X/766/2/70.
M. Tewes, F. Courbin, G. Meylan, C. S. Kochanek, E. Eulaers, N. Cantale, A. M. Mosquera, P. Magain, H. Van Winckel, D. Sluse, G. Cataldi, D. Voros, and S. Dye. COSMOGRAIL XII: Time delays and 9-yr optical monitoring of the lensed quasar RX J1131-1231. ArXiv e-prints (1208.6009), August 2012.
T. Treu. Strong Lensing by Galaxies. , 48:87–125, September 2010. doi: 10.1146/annurev- astro-081309-130924.
T. Treu and R. S. Ellis. Gravitational Lensing - Einstein’s Unfinished Symphony. ArXiv e-prints, December 2014.
T. Treu and L. V. E. Koopmans. Massive Dark Matter Halos and Evolution of Early-Type Galaxies to z ̃ 1. , 611:739–760, August 2004. doi: 10.1086/422245.
C. Vuissoz, F. Courbin, D. Sluse, G. Meylan, M. Ibrahimov, I. Asfandiyarov, E. Stoops, A. Eigenbrod, and et al. COSMOGRAIL: the COSmological MOnitoring of GRAvIta- tional Lenses. V. The time delay in SDSS J1650+4251. , 464:845–851, March 2007. doi: 10.1051/0004-6361:20065823.
C. Vuissoz, F. Courbin, D. Sluse, G. Meylan, V. Chantry, E. Eulaers, C. Morgan, M. E. Eyler, C. S. Kochanek, J. Coles, P. Saha, P. Magain, and E. E. Falco. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. VII. Time delays and the Hubble constant from WFI J2033-4723. , 488:481–490, September 2008. doi: 10.1051/0004- 6361:200809866.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關點閱論文