跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 05:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柳君諭
研究生(外文):Chun-Yu Liu
論文名稱:在N=7超重力理論中優化漸進趨勢以及BCFW
論文名稱(外文):Bonus Scaling and BCFW in N=7 Supergravity
指導教授:黃宇廷黃宇廷引用關係
口試委員:賀培銘細道和夫
口試日期:2015-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用物理所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:45
中文關鍵詞:散射振幅旋量螺度遞迴關係超對稱超重力
外文關鍵詞:Scattering amplitudesSpinor helicityRecursion relations SupersymmetrySupergravity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇文章中將簡短的回顧散射振幅。回顧內容包含兩部分。第一部分裡,我們回顧散射振幅的定義以及旋量螺度,並且使用旋量螺度的方式來表示楊-米爾斯理論的散射振幅。在第二部分中,我們將簡短回顧超對稱。這部分的回顧僅止于使用在建構超對稱散射振幅的基本程度。在這之後我們還會介紹超重力理論。
在概覽完散射振幅的簡介以後,第三部分我們將開始尋找俱有自然性質的建構散射振幅元件。我們將會給出一套系統方式去建構散射振幅,這套模式中每一個建構元件在高能量時都俱有更好的漸進行為z^(-2),就好比散射振幅一樣。我們將在N=7超重力理論中使用布里托、卡查索、馮以及維滕的遞迴關係,並且使用特定的動量形變以展現更好的漸進行為。並且我們將會解釋這個更好的行為是因為使用了N=8超重力理論中的附加關係式。


We review some ideas of scattering amplitudes. The review consists of two parts. In Part I, we review the definition of scattering amplitudes and spinor helicity. We use the technology of spinor helicity to represent scattering amplitudes in Yang-Mills theory. In part II, we review supersymmetry. The review will be on a basic level to introduce superamplitudes. We then introduce supergravity amplitudes. After introducing amplitudes, we search for natural building blocks for supergravity amplitudes in part III. We want to show a systematic way to find the building blocks which are term-by-term bonus z^(-2) large momentum scaling just like amplitudes. For a given choice of deformation legs, we present such an expansion in the form of the Britto, Cachazo, Feng and Witten recursion relation in N=7 supergravity based on a special shift. We will show that this improved scaling behavior, with respect to the fully N=8 representation, is due to its automatic incorporation of the so called bonus relations.

1 Introduction ............................................................. 3
Part I
2 Spinor Formalism ..................................................... 6
2.1 RepresentationofLorentzgroup............................... 6
2.2 SpinorFields .......................................................... 9
2.3 Yang-MillsTheory ................................................. 11
2.4 LittleGroup............................................................ 12
3 BCFW Recursion Relation ......................................... 13
3.1 BCFW.................................................................... 14
3.2 Multi-stepBCFW.................................................... 17
Part II
4 Supersymmetry ....................................................... 18
4.1 N=1Supersymmetry ............................................. 19
4.2 SupersymmetryWardIdentities............................... 22
4.3 N=4SuperYang-MillsTheory.................................. 23
4.4 SuperBCFW .......................................................... 25
4.5 N=8SupergravityAmplitudes................................. 26
Part III
5 Bonus scaling and BCFW in N = 7 supergravity ........ 28
5.1 N=7 superamplitudes............................................ 29
5.1.1 From N=8 to N=7 ................................................ 29
5.1.2 BCFW in the N=7 formalism .................................. 31
5.2 Bonus z scaling of N=7“badshift”BCFW terms ............. 32
5.2.1 A particular [-,+> test shift: NkMHV amplitudes....... 32
5.2.2 General [-,+> test shifts: the MHV case ...................... 35
5.2.3 Comparison to other formulas for supergravity amplitudes . . . . 36
5.3 N =8 bonus relations and N =7 bonus scaling: the MHV case . . . . . 36
5.4 Bonus scaling of “bad shift” BCFW for string amplitudes . . . . . . . . . 38
6 Conclusion and Future directions ....................................41
A Derivation of P.................................................................43
Reference............................................................................44


[1] R. Britto, F. Cachazo, B. Feng and E. Witten, Phys. Rev. Lett. 94, 181602 (2005)
[hep-th/0501052].
[2] N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, JHEP 1003, 020 (2010) [arXiv:0907.5418 [hep-th]].
[3] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, A. B. Goncharov, A. Postnikov and J. Trnka, [arXiv:1212.5605 [hep-th]].
[4] O. Aharony, O. Bergman, D. L. Jaeris and J. Maldacena, JHEP 0810, 091 (2008) [arXiv:0806.1218 [hep-th]].
[5] K. Hosomichi, K. -M. Lee, S. Lee, S. Lee and J. Park, JHEP 0809, 002 (2008) [arXiv:0806.4977 [hep-th]].
[6] S. Lee, Phys. Rev. Lett. 105, 151603 (2010) [arXiv:1007.4772 [hep-th]].
[7] Y. -T. Huang and C. Wen, “ABJM amplitudes and the positive orthogonal Grass-
mannian,” JHEP 1402, 104 (2014) [arXiv:1309.3252 [hep-th]].
[8] Y. -t. Huang, C. Wen and D. Xie, “The Positive orthogonal Grassmannian and loop
amplitudes of ABJM,” [arXiv:1402.1479 [hep-th]].
[9] J. M. Drummond, J. M. Henn and J. Plefka, JHEP 0905, 046 (2009) [arXiv:0902.2987 [hep-th]].
[10] N. Arkani-Hamed and J. Kaplan, JHEP 0804, 076 (2008) [arXiv:0801.2385 [hep-th]].
[11] D. A. McGady and L. Rodina, [arXiv:1408.5125 [hep-th]].
[12] N. Arkani-Hamed, F. Cachazo and J. Kaplan, JHEP 1009, 016 (2010) [arXiv:0808.1446 [hep-th]].
[13] D. Nguyen, M. Spradlin, A. Volovich and C. Wen, JHEP 1007, 045 (2010) [arXiv:0907.2276 [hep-th]].
[14] A. Hodges, JHEP 1307 (2013) [arXiv:1108.2227 [hep-th]].
[15] H. Elvang, Y. t. Huang and C. Peng, JHEP 1109, 031 (2011) [arXiv:1102.4843
[hep-th]].
[16] D. Nandan and C. Wen, JHEP 1208, 040 (2012) [arXiv:1204.4841 [hep-th]].
[17] R. Boels, K. J. Larsen, N. A. Obers and M. Vonk, JHEP 0811, 015 (2008) [arXiv:0808.2598 [hep-th]].
[18] R. H. Boels, D. Marmiroli and N. A. Obers, JHEP 1010, 034 (2010) [arXiv:1002.5029 [hep-th]].
[19] S. He, D. Nandan and C. Wen, JHEP 1102, 005 (2011) [arXiv:1011.4287 [hep-th]]. 44
[20] B. Feng, K. Zhou, C. Qiao and J. Rao, JHEP 1503, 023 (2015) [arXiv:1411.0452 [hep-th]].

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top