跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/30 00:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃偉倫
研究生(外文):Wei-Lun Huang
論文名稱:氫摻雜非晶相銦鎵鋅氧化物薄膜電晶體之電性及穩定度分析
論文名稱(外文):Electrical Characterization and Reliability Study of Amorphous InGaZnO TFTs with Hydrogen Incorporation
指導教授:張顏暉張顏暉引用關係
口試委員:劉致為林中一林吉聰
口試日期:2015-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用物理所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:80
中文關鍵詞:薄膜電晶體非晶相銦鎵鋅氧化物光吸收氫摻雜穩定度分析
外文關鍵詞:Thin-film transistorsAmorphous InGaZnOOptical absorptionHydrogen incorporationReliability test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高解析度的顯示器已成為未來的趨勢。由於驅動高解析度顯示器的通道材料需要具有更高的載子遷移率(Carrier Mobility),傳統的通道材料非晶矽(-Si)將無法配合未來的需求。雖然低溫多晶矽(LTPS)有著較高的載子遷移率,但其在大尺寸顯示器的應用上有均勻性不足的先天限制。因此近年來非晶相銦鎵鋅氧化物(-IGZO)薄膜電晶體應用於主動矩陣有機發光二極體(AMOLED)已經成為研究的趨勢。相較-Si,-IGZO有著較高的載子遷移率(Mobility~10 cm2/V-s),且製程上可以在室溫中利用RF-Sputter沈積通道材料,並有效地控制薄膜均勻性。因此,-IGZO成為驅動下世代面板之薄膜電晶體的熱門材料。
-IGZO薄膜的能隙間缺陷態(Subgap states)會隨著不同的成長環境以及退火處理有所差別,使得在電性操作以及光學吸收的特性產生改變。本論文利用廣波長光源量測不同氫退火處理之-IGZO薄膜的光吸收係數,配合Tauc plot的作圖定義出-IGZO薄膜的光能帶隙 (Optical band gap),並計算出-IGZO薄膜的Urbach energy,以分析不同氫退火條件下之Subgap states的分布。
在-IGZO薄膜電晶體的製程中,緩衝層(Buffer layer)、閘極介電層(Gate dielectric)、層間介電層(Interlayer dielectric)以及鈍化層(Passivation layer)之氧化矽製程中皆使用矽甲烷(SiH4),這將使得氫參雜入-IGZO與其反應。控制不同的SiH4流量,可以控制參雜之氫含量,進而影響元件的電性,例如載子遷移率、次臨界擺幅、次臨界電壓等等。藉由元件的電性量測分析,研究氫參雜對元件電性上的影響,並探討其物理機制。
元件的穩定度在應用與量產上佔有極重要的地位。由於偏壓應力的施加將導致元件失真,使得元件電性衰減。本研究將對元件做正偏壓(PBS)、負偏壓(NBS)以及照光負偏壓(NBIS)的穩定度測試。在先前已發表的文獻中已提出幾項原因以及理論模型,例如:電荷被氧化層捕捉、能帶間產生新的缺陷分布等等,解釋偏壓應力產生的臨界電壓偏移、汲極電流、電子遷移率次臨界斜率的衰退。本論文將對於-IGZO薄膜電晶體進行詳細的穩定度分析,並探討元件電性衰退的物理機制。


Recently, amorphous InGaZnO (-IGZO) has been intensively studied because of its potential display applications including the thin film transistor (TFT) backplanes for flexible display, active matrix organic light-emitting diode display (AMOLED). -IGZO TFTs show low processing temperature, excellent uniformity, good transparency to visible light, and high saturation mobility (>10 cm2/V-s) as compared with conventional amorphous silicon. As a result, -IGZO TFTs are an attractive alternative for advanced displays.
The high density of defect states in -IGZO degrades device performance and causes device instability. Therefore, reducing the density of subgap states in -IGZO is critical for applications. The material properties of a-IGZO thin film after forming gas annealing (FGA) is investigated. The absorption spectrum of thin films after FGA are measured through monochromater. The optical band gap and Urbach energy are calculated to analyze the subgap states of -IGZO thin films after FGA.
Silane (SiH4) is introduced during the deposition process of gate dielectric, interlayer dielectric, buffer layer, and passivation layer. Hydrogen is incorporated into -IGZO during the deposition processes and affects device performance. The content of hydrogen can be controlled through the SiH4 flow rate. The electrical properties for devices with different SiH4 flow rate are measured to investigate the effect of hydrogen incorporation.
The degradation of device performance after electrical bias stress has been reported by the charge trapping mechanism and subgap states creation. Therefore, the reliability tests of -IGZO TFTs with different SiH4 flow rate are measured including positive bias stress (PBS), negative bias stress (NBS), and negative bias illumination stress (NBIS), and discusses the physical mechanism of the degradation.


口試委員會審定書 #
誌謝 1
中文摘要 2
ABSTRACT 4
CONTENTS 6
LIST OF FIGURES 9
Chapter 1 Introduction 14
1.1 Motivation 14
1.2 Thesis organization 15
Chapter 2 Material properties and optical analysis of -IGZO thin films 17
2.1 Introduction 17
2.2 Conduction mechanism of -IGZO 18
2.3 Electronic structure of -IGZO 21
2.4 Optical absorption of -IGZO 23
2.5 Forming gas annealing on -IGZO thin film 27
2.6 Summary 35
Chapter 3 Electrical properties and Hydrogen passivation effect of -IGZO TFTs 36
3.1 Introduction 36
3.2 Electrical characteristics of the α-IGZO TFTs with top-gate structure 37
3.2.1 Device fabrication 37
3.2.2 Operation mode of -IGZO 38
3.2.3 The influence of defect states on electrical properties 42
3.3 Electrical enhancement of the α-IGZO TFTs with top-gate structure by hydrogen incorporation 47
3.3.1 Improvement of electrical properties by hydrogen passivation 47
3.4 Summary 52
Chapter 4 Reliability improvement of -IGZO TFTs by hydrogen incorporation 53
4.1 Introduction 53
4.2 Electrical instability of -IGZO TFTs 54
4.2.1 PBS of -IGZO TFTs with top-gate structure 54
4.2.2 NBS of -IGZO TFTs with top-gate structure 59
4.3 Negative gate bias and ultra-violate light illumination stress of -IGZO TFTs with top-gate structure 63
4.3.1 Electrical characterization of -IGZO TFTs during UV illumination 63
4.3.2 NBIS of -IGZO TFTs with UV LED illumination 68
4.4 Summary 72
Chapter 5 Summary and future works 73
5.1 Summary 73
5.2 Future work 74
REFERENCE 75


[1]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors.” Nature, vol.432, pp.488-92 (2004).
[2]S. Sasaki, H. Ogata, and A. Hara, “Self-aligned planar metal double-gate low-temperature polycrystalline-silicon thin-film transistors on glass substrate." Active-Matrix Flatpanel Displays and Devices, 2013 Twentieth International Workshop on IEEE.
[3]H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, and H. Kumomi, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering.” Appl. Phys. Lett. 89, 112123 (2006).
[4]R. Hayashi, M. Ofuji, N. Kaji, K. Takahashi, K. Abe, H. Yabuta, M. Sano, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, “Circuits using uniform TFTs based on amorphous In-Ga-Zn-O.” J. Soc. Inf. Disp. 15, 915 (2007).
[5]T. Kamiya and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors.” NPG Asia Mater. 2(1) 15-22 (2010).
[6]K. H. Cherenack, N. S. Münzenrieder, G. Tröster, “Impact of Mechanical Bending on ZnO and IGZO Thin-Film Transistors.” IEEE Electron Device Letters 31, 11 (2010).
[7]G. Cantarella, N. Munzenrieder, L. Petti, C. Vogt, L. Buthe, G. A. Salvatore, A. Daus, and G. Troster, "Flexible In-Ga-Zn-O Thin-Film Transistors on elastomeric substrate bent to 2.3% strain." IEEE Electron Device Letters PP , 99 (2015).
[8]J. K. Jeong, J. H. Jeong, J. H. Choi, J. S. Im, S. H. Kim, H. W. Yang, K. N. Kang, K. S. Kim, T. K. Ahn, H.-Joong Chung, M. Kim, B. S. Gu, J.-Seong Park, Y.-Gon Mo, and H. D. Kim, “3.1: Distinguished Paper: 12.1‐Inch WXGA AMOLED Display Driven by Indium‐Gallium‐Zinc Oxide TFTs Array.” SID Symposium Digest of Technical Papers 39, 1-4 (2008).
[9]T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors.” Science and Technology of Advanced Materials, vol.11, pp.044305 (2010).
[10]T. Kamiya, K. Nomura, and H. Hosono, “Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping,” Journal of Display Technology, vol. 5, Dec. 2009, pp. 468-483.
[11]K. Nomura, T. Kamiya, E. Ikenaga, H. Yanagi, K. Kobayashi and H. Hosono, “Depth analysis of subgap electronic states in amorphous oxide semiconductor, a-In-Ga-Zn-O, studied by hard x-ray photoelectron spectroscopy.” J. Appl. Phys. 109, 073726 (2011).
[12]K. Nomura, T. Kamiya, H. Ohta, K. Ueda, M. Hirano, and H. Hosono, “Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films.” Appl. Phys. Lett. 85, 11, (2004).
[13]A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO.” Thin Solid Films, vol.486, pp.38-41 (2005).
[14]W.-J. Lee, B. Ryu, and K.J. Chang, “Electronic structure of oxygen vacancy in crystalline InGaO3(ZnO)m,” Physica B: Condensed Matter, vol.404 (2009).
[15]H.-H. Hsieh, T. Kamiya, K. Nomura, H. Hosono, and C.-C. Wu, “Modeling of amorphous InGaZnO4thin film transistors and their subgap density of states,” Appl. Phys. Lett. 92, 13, 133503 (2008).
[16]J. Yao, N. Xu, S. Deng, J. Chen, J. She, H.-P. Shieh, P.-T. Liu, and Y.-P. Huang, “Electrical and Photosensitive Characteristics of a-IGZO TFTs Related to Oxygen Vacancy” IEEE Transactions on Electron Devices Vol.58, No.4 (2011).
[17]W.-T. Chen, S.-Y. Lo, S.-C. Kao, H.-W. Zan, C.-C. Tsai, J.-H. Lin, C.-H. Fang, and C.-C. Lee, “Oxygen-Dependent Instability and Annealing/Passivation Effects in Amorphous In–Ga–Zn–O Thin-Film Transistors”, IEEE Electron Device Letters Vol.32, No.11 (2011).
[18]J. I. Pankove, Optical Processes in Semiconductors. New York: Dover Publications, Inc. (1971).
[19]J. Tauc, Amorphous and liquid semiconductors. New York: Plenum Press (1974).
[20]S. R. Elliot, Physics of Amorphous Materials. New York: Longman (1983).
[21]H.-K. Noh, J.-S. Park, and K. J. Chang, “Effect of hydrogen incorporation on the negative bias illumination stress instability in amorphous In-Ga-Zn-O thin-film-transistors.” J. Appl. Phys. 113, 063712 (2013).
[22]Y. Hanyu, K. Domen, K. Nomura, H. Hiramatsu, H. Kumomi, H. Hosono, and T. Kamiya, ‘Hydrogen passivation of electron trap in amorphous In-Ga-Zn-O thin-film transistors’ Appl. Phys. Lett. 103, 202114 (2013).
[23]S.-I. Oh, G. Choi, H. Hwang, W. Lu, and J.-H. Jang, “Hydrogenated IGZO Thin-Film Transistors Using High-Pressure Hydrogen Annealing.” IEEE Transactions on Electron Devices Vol.60, No.8 (2013).
[24]K. Hoshino, D. Hong, H. Q. Chiang, and J. F. Wager, “Constant-Voltage-Bias Stress Testing of a-IGZO Thin-Film Transistors.” IEEE Transactions on Electron Devices Vol.56, No.7 (2009).
[25]A. Suresh and J. F. Muth, “Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors.” Appl. Phys. Lett. 92, 033502 (2008).
[26]E. N. Cho, J. H. Kang, C. E. Kim, P. Moon, and I. Yun, “Analysis of Bias Stress Instability in Amorphous InGaZnO Thin-Film Transistors.” IEEE Transactions on Device and Materials Reliability 11, 1 (2011).
[27]Y.-K. Moon, S. Lee, D.-H. Kim, D.-H. Lee, C.-O. Jeong, and J.-W. Park, “Application of DC Magnetron Sputtering to Deposition of InGaZnO Films for Thin Film Transistor Devices” Jpn. J. Appl. Phys. 48, 031301 (2009).
[28]H. Oh, S.-M. Yoon, M. K. Ryu, C.-S. Hwang, S. Yang, and S.-H. K. Park, “Photon-accelerated negative bias instability involving subgap states creation in amorphous In–Ga–Zn–O thin film transistor.” Appl. Phys. Lett. 97, 183502 (2010).
[29]B. Ryu, H.-K. Noh, E.-A. Choi, and K. J. Chang, “O-vacancy as the origin of negative bias illumination stress instability in amorphous In–Ga–Zn–O thin film transistors” Appl. Phys. Lett. 97, 022108 (2010).
[30]H.-K. Noh, K. J. Chang, B. Ryu, and W.-J. Lee, ”Electronic structure of oxygen-vacancy defects in amorphous In-Ga-Zn-O semiconductors.” Phys. Rev. B 84, 115205 (2011).
[31]X. Huang, C. Wu, H. Lu, F. Ren, Q. Xu, H. Ou, R. Zhang, and Y. Zheng, “Electrical instability of amorphous indium-gallium-zinc oxide thin film transistors under monochromatic light illumination.” Appl. Phys. Lett. 100, 243505 (2012).
[32]V. Kumar, R. G. Singh, L.P. Purohit, R. M. Mehra, “Structural, transport and optical properties of boron-doped zinc oxide nanocrystalline.” J. Mater. Sci. Technol. 27, 481–488 (2011).
[33]J.-M. Lee, I.-T. Cho, J.-H. Lee, and Hyuck-In Kwon, “Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors.” Appl. Phys. Lett. 93, 093504 (2008).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top