跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/27 20:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃耀緯
研究生(外文):Yao-Wei Huang
論文名稱:電漿子超穎介面於全彩全像片與電調控光學元件之應用
論文名稱(外文):Plasmonic Metasurface for Visible Hologram and Electrically Tunable Devices
指導教授:蔡定平
指導教授(外文):Din Ping Tsai
口試委員:果尚志嚴大任黃承彬黃哲勳藍永強
口試委員(外文):Shangjr GwoTa-Jen YenChen-Bin HuangJer-Shing HuangYung-Chiang Lan
口試日期:2015-07-31
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:應用物理所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:71
中文關鍵詞:超穎材料超穎介面電漿子學超穎全像片全像術奈米天線透明導電氧化物電調控場效調控
外文關鍵詞:Metamaterialsmetasurfacesplasmonicsmeta-hologramholographynanoantennastransparent conducting oxideelectrically tunablefield-effect modulation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:416
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今視覺的科技日新月異,色彩三原色分光與偏振選擇為主要範疇。液晶顯示器或數位微鏡裝置組成的全像片以純量光學為基礎,不具有偏振選擇性。超穎材料或超穎介面則以表面電磁場的純量光學為基礎,在次波長維度下調控光的振幅、相位與偏振性,並廣泛應用於寬頻、寬角度、偏振選擇性相位全像片。然而,目前超穎材料或超穎介面之工作範圍因為材料限制,難以設計在可見光波段,寬頻工作的超穎材料或超穎介面也難以達到波長分波多工。
另一方面,光訊息可藉由振幅、相位、偏振、頻率、或結合其中幾項來記錄與調控。以晶片基礎的表面電漿調控器結合奈米尺度的表面電漿結構與光子學元件組合而成,具有最快調控速度與需要最少單位訊號所需能量的優點。由次波長人造材料的超穎介面具有非凡的光調控特性,在廣闊的電磁波波段具有前瞻的超薄光學元件應用,諸如透鏡、波片、角動量感應器、全像片等。然而目前的超穎介面調控方式由結構的尺寸、大小所決定,元件製作後性質即已固定,無法調控。具有動態調控式的超穎介面則為實現動態可重組的超平面光學元件的重要挑戰。
本文主要設計與研究全彩超穎全像片與電調控式超穎介面。全彩超穎全像片由二維排列的鋁奈米棒/二氧化矽/鋁鏡組成的像素所構成,在可見光波段具有偏振選擇性、波長選擇性影像。藉由適當的窄頻設計,波長多工、色彩三原色的影像即可組合全彩影像。各種長度的鋁奈米棒陣列的反射光譜與設計吻合,具有多種顏色並可應用於奈米全彩調色。
電調控式超穎介面則以透明導電氧化物材料(氧化銦錫) 的動態電場侷域性為基礎,設計與研究電調控式超穎介面。我們以閘極調控氧化銦錫的介電係數原理,電調控超穎介面的相位與振幅,並更進一步設計電調控式超穎介面元件。我們藉由結合半導體物理與電磁波的物理模型來設計與分析電調控式超穎介面。藉由不同的外加偏壓,我們研究電調控式超穎介面組成的動態相位陣列所形成的動態繞射條紋。此研究提出了以閘極電調控場效式超穎介面的設計原理,實現主動式超穎介面元件。


Nowadays, vision technologies in various color applications are primarily targeting the three primary colors and their mixing in conjunction with control of light polarization. The scalar diffractive pattern of liquid crystal displays (LCD) or digital micro-mirror devices (DMD) employed in hologram renders polarization unswitchable. The metamaterials or metasurfaces employed surface electromagnetic wave are capable of shaping both amplitude phase and polarization of light over subwavelength length scales. They have been previously applied to broadband and broad-angle phase hologram with polarization-dependent images but failed to yield color multiplexing in the visible spectrum.
In contrast, light information can be manipulated either in amplitude, phase, polarization, or frequency, and combination thereof. Chip based hybrid-plasmonic modulators made of incorporating nanoscale plasmonics and classic photonic elements has the fasted modulation speed and lowest energy-per-signal are proposed to overcome a limited propagation length and higher loss of a surface plasmon-polariton (SPP) mode. Metasurfaces composed of sub-wavelength artificial structures show promise for extraordinary light-manipulation and development of ultrathin optical components over a broad range of the electromagnetic spectrum. However structures developed to date do not allow for post-fabrication control of antenna properties. Metasurfaces incorporating dynamically tunable methods offer the unprecedented opportunities in reconfigurable flat optical devices.
In this dissertation, a phase modulated multi-color meta-hologram (MCMH) and an electrically gate-tunable metasurface were design and investigated. The MCMH made of sandwich structure of Al-nanorod/SiO2/Al-mirror arranged in a two-dimensional array of pixels is polarization-dependent and capable of producing images in three primary colors. With proper design of the structure, we obtain resonances of narrow bandwidths to allow for implementation of the multi-color scheme. Experimental reflected spectrum for each kind of nanorods array are investigated, which is in agreement with the simulation results and certainly lead to full color applications using color mixing.
We have investigated the integration of the transparent conductor indium tin oxide (ITO) active elements to realize gate-tunable phased arrays of subwavelength antenna in a reflectarray metasurface configuration to enable gate-tunable permittivity. The magnetic dipole resonance of each antenna interacts with the carrier density-dependent permittivity resonance of the ITO to enable phase and amplitude tunability. A multiphysics method incorporated semiconductor physics and electromagnetic waves are considered in the design and resonance analysis. A simple 2-level dynamic phase grating is investigated using the gate-tunable metasurface. With different applied biases, the controllable diffraction patterns have been investigated by dynamic phase grating system. This work provides a general design principle applicable to dynamic metasurface devices based on gate-tunable field effect.


口試委員會審定書 I
誌 謝 II
中文摘要 IV
Abstract VI
Contents VIII
List of Figures X
List of Tables XVI
1 Introduction 1
1.1 Holograms 1
1.2 Metamaterials, Metasurfaces, and Meta-Holograms 2
1.3 Tunable Metamaterials and Field-Effect Modulation 5
1.4 Motivation 7
2 Methods 9
2.1 Generalized Snell''s Law 9
2.2 Computational Electromagnetics 11
2.3 Physical Model of Reflective Metasurface 13
2.4 Computer-Generated Hologram 16
3 Aluminum Plasmonic Multi-Color Meta-Hologram 18
3.1 Design of MCMH 19
3.2 Efficiency and Crosstalk of Single Meta-Hologram 22
3.3 Images Size Correction 27
3.4 Fabrication of MCMH 28
3.5 Reconstructed Images and Efficiency of MCMH 30
3.6 Aluminum Nanorod Analysis 37
3.7 Summary 38
4 Electrically Gate-Tunable Metasurfaces 40
4.1 Accumulation layer and ENZ region of ITO 42
4.2 Coupling Plasmonic Resonance with ITO 45
4.3 Dynamic Phase Grating 48
4.4 Fabrication of Gate-Tunable Metasurfaces 51
4.5 Experimental Characteristics of ITO 53
4.6 Reflectance and Phase Measurements 55
4.7 Summary 59
Bibliography 61
Publication List 68


1.P. K. Brown, and G. Wald, "Visual pigments in single rods and cones of the human retina," Science 144, 45-51 (1964).

2.J. E. Dowling, The retina: An approachable part of the brain (Harvard University Press, Cambridge, MA, 1987).

3.Y. N. Denisyuk, "On the reflection of optical properties of an object in a wave field of light scattered by it," Doklady Akademii Nauk SSSR 144, 1275-1278 (1962).

4.R. Kunzig, "The hologram revolution," Discover 23, 55-57 (2002).

5.T. Haist, M. Schonleber, and H. J. Tiziani, "Computer-generated holograms from 3d-objects written on twisted-nematic liquid crystal displays," Optics Communications 140, 299-308 (1997).

6.T. Kreis, P. Aswendt, and R. Hofling, "Hologram reconstruction using a digital micromirror device," Optical Engineering 40, 926-933 (2001).

7.M. Ozaki, J. Kato, and S. Kawata, "Surface-plasmon holography with white-light illumination," Science 332, 218-220 (2011).

8.N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science 334, 333-337 (2011).

9.S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Y. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, "High-efficiency broadband anomalous reflection by gradient meta-surfaces," Nano Letters 12, 6223-6229 (2012).

10.L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, "Dispersionless phase discontinuities for controlling light propagation," Nano Letters 12, 5750-5755 (2012).

11.S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, "Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves," Nature Materials 11, 426-431 (2012).

12.X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, "Broadband light bending with plasmonic nanoantennas," Science 335, 427-427 (2012).

13.N. Yu, and F. Capasso, "Flat optics with designer metasurfaces," Nature Materials 13, 139-150 (2014).

14.N. Meinzer, W. L. Barnes, and I. R. Hooper, "Plasmonic meta-atoms and metasurfaces," Nature Photonics 8, 889-898 (2014).

15.S. Larouche, Y. J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, "Infrared metamaterial phase holograms," Nature Materials 11, 450-454 (2012).

16.B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tunnermann, and T. Pertsch, "Spatial and spectral light shaping with metamaterials," Advanced Materials 24, 6300-6304 (2012).

17.Y. Montelongo, J. O. Tenorio-Pearl, W. I. Milne, and T. D. Wilkinson, "Polarization switchable diffraction based on subwavelength plasmonic nanoantennas," Nano Letters 14, 294-298 (2014).

18.Y. Montelongo, J. O. Tenorio-Pearl, C. Williams, S. Zhang, W. I. Milne, and T. D. Wilkinson, "Plasmonic nanoparticle scattering for color holograms," Proceedings of the National Academy of Sciences of the United States of America 111, 12679-12683 (2014).

19.X. J. Ni, A. V. Kildishev, and V. M. Shalaev, "Metasurface holograms for visible light," Nature Communications 4, 2807 (2013).

20.L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, "Three-dimensional optical holography using a plasmonic metasurface," Nature Communications 4, 2808 (2013).

21.W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, "High-efficiency broadband meta-hologram with polarization-controlled dual images," Nano Letters 14, 225-230 (2014).

22.Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, "Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays," Nano Letters 14, 2485-2490 (2014).

23.G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, "Metasurface holograms reaching 80% efficiency," Nature Nanotechnology 10, 308-312 (2015).

24.J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," Ieee Transactions on Microwave Theory and Techniques 47, 2075-2084 (1999).

25.D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters 84, 4184-4187 (2000).

26.S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).

27.W. T. Chen, C. J. Chen, P. C. Wu, S. L. Sun, L. Zhou, G. Y. Guo, C. T. Hsiao, K. Y. Yang, N. I. Zheludev, and D. P. Tsai, "Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules," Optics Express 19, 12837-12842 (2011).

28.T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, "Toroidal dipolar response in a metamaterial," Science 330, 1510-1512 (2010).

29.Y. W. Huang, W. T. Chen, P. C. Wu, V. Fedotov, V. Savinov, Y. Z. Ho, Y. F. Chau, N. I. Zheludev, and D. P. Tsai, "Design of plasmonic toroidal metamaterials at optical frequencies," Optics Express 20, 1760-1768 (2012).

30.Y. W. Huang, W. T. Chen, P. C. Wu, V. A. Fedotov, N. I. Zheludev, and D. P. Tsai, "Toroidal lasing spaser," Scientific Reports 3, 1237 (2013).

31.B. Luk''yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The fano resonance in plasmonic nanostructures and metamaterials," Nature Materials 9, 707-715 (2010).

32.P. C. Wu, W. T. Chen, K. Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, "Magnetic plasmon induced transparency in three-dimensional metamolecules," Nanophotonics 1, 131-138 (2012).

33.M. Ricci, N. Orloff, and S. M. Anlage, "Superconducting metamaterials," Applied Physics Letters 87, 034102 (2005).

34.V. Savinov, V. A. Fedotov, S. M. Anlage, P. A. J. de Groot, and N. I. Zheludev, "Modulating sub-thz radiation with current in superconducting metamaterial," Physical Review Letters 109, 243904 (2012).

35.L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, "Graphene plasmonics for tunable terahertz metamaterials," Nature Nanotechnology 6, 630-634 (2011).

36.Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, "Gate-tuning of graphene plasmons revealed by infrared nano-imaging," Nature 487, 82-85 (2012).

37.A. N. Grigorenko, M. Polini, and K. S. Novoselov, "Graphene plasmonics," Nature Photonics 6, 749-758 (2012).

38.V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, "Highly confined tunable mid-infrared plasmonics in graphene nanoresonators," Nano Letters 13, 2541-2547 (2013).

39.H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).

40.A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nature Materials 6, 946-950 (2007).

41.Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Z. Zhang, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Applied Physics Letters 90, 011112 (2007).

42.F. L. Zhang, Q. Zhao, W. H. Zhang, J. B. Sun, J. Zhou, and D. Lippens, "Voltage tunable short wire-pair type of metamaterial infiltrated by nematic liquid crystal," Applied Physics Letters 97, 134103 (2010).

43.A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Y. S. Kivshar, "Liquid crystal based nonlinear fishnet metamaterials," Applied Physics Letters 100, 121113 (2012).

44.T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, "Memory metamaterials," Science 325, 1518-1521 (2009).

45.Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, "Metamaterial electro-optic switch of nanoscale thickness," Applied Physics Letters 96, 143105 (2010).

46.J. Y. Ou, E. Plum, J. F. Zhang, and N. I. Zheludev, "An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared," Nature Nanotechnology 8, 252-255 (2013).

47.J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, "A magneto-electro-optical effect in a plasmonic nanowire material," Nature Communications 6, 7021 (2015).

48.K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, "Review and perspective on ultrafast wavelength-size electro-optic modulators," Laser & Photonics Reviews 9, 172-194 (2015).

49.J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, "Plasmostor: A metal-oxide-si field effect plasmonic modulator," Nano Letters 9, 897-902 (2009).

50.E. Feigenbaum, K. Diest, and H. A. Atwater, "Unity-order index change in transparent conducting oxides at visible frequencies," Nano Letters 10, 2111-2116 (2010).

51.H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, "Nanoscale conducting oxide plasmostor," Nano Letters 14, 6463-6468 (2014).

52.A. Boltasseva, and H. A. Atwater, "Low-loss plasmonic metamaterials," Science 331, 290-291 (2011).

53.G. V. Naik, J. Kim, and A. Boltasseva, "Oxides and nitrides as alternative plasmonic materials in the optical range invited," Optical Materials Express 1, 1090-1099 (2011).

54.G. V. Naik, V. M. Shalaev, and A. Boltasseva, "Alternative plasmonic materials: Beyond gold and silver," Advanced Materials 25, 3264-3294 (2013).

55.A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Applied Optics 37, 5271-5283 (1998).

56.M. W. Knight, L. F. Liu, Y. M. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, "Aluminum plasmonic nanoantennas," Nano Letters 12, 6000-6004 (2012).

57.M. W. Knight, N. S. King, L. F. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, "Aluminum for plasmonics," Acs Nano 8, 834-840 (2014).

58.J. Olson, A. Manjavacas, L. F. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, "Vivid, full-color aluminum plasmonic pixels," Proceedings of the National Academy of Sciences of the United States of America 111, 14348-14353 (2014).

59.X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, "Three-dimensional plasmonic stereoscopic prints in full colour," Nature Communications 5, 5361 (2014).

60.S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, "Plasmonic color palettes for photorealistic printing with aluminum nanostructures," Nano Letters 14, 4023-4029 (2014).

61.V. R. Shrestha, S. Lee, E. Kim, and D. Choi, "Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array," Nano Letters 14, 6672-6678 (2014).

62.B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, "Color-selective and cmos-compatible photodetection based on aluminum plasmonics," Advanced Materials 26, 6318-6323 (2014).

63.F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gahurro, and F. Capasso, "Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Letters 12, 4932-4936 (2012).

64.N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, "A broadband, background-free quarter-wave plate based on plasmonic metasurfaces," Nano Letters 12, 6328-6333 (2012).

65.P. Genevet, J. Lin, M. A. Kats, and F. Capasso, "Holographic detection of the orbital angular momentum of light with plasmonic photodiodes," Nature Communications 3, 1278 (2012).

66.P. Genevet, and F. Capasso, "Holographic optical metasurfaces: A review of current progress," Reports on Progress in Physics 78, 024401 (2015).

67.F. Wyrowski, and O. Bryngdahl, "Iterative fourier-transform algorithm applied to computer holography," Journal of the Optical Society of America A, Optics and Image Science 5, 1058-1065 (1988).

68.Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, "Aluminum plasmonic multicolor meta-hologram," Nano Letters 15, 3122-3127 (2015).

69.A. Klein, C. Korber, A. Wachau, F. Sauberlich, Y. Gassenbauer, S. P. Harvey, D. E. Proffit, and T. O. Mason, "Transparent conducting oxides for photovoltaics: Manipulation of fermi level, work function and energy band alignment," Materials 3, 4892-4914 (2010).

70.J. Yota, H. Shen, and R. Ramanathan, "Characterization of atomic layer deposition hfo2, al2o3, and plasma-enhanced chemical vapor deposition si3n4 as metal-insulator-metal capacitor dielectric for gaas hbt technology," Journal of Vacuum Science & Technology A 31, 01A134 (2013).

71.A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, "Surface plasmon polariton absorption modulator," Optics Express 19, 8855-8869 (2011).

72.F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, "Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 mu m," Optics Letters 34, 839-841 (2009).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top