跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 08:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳季青
研究生(外文):Ji-Qing Chen
論文名稱:探討第二型白血球趨化因子在卵巢癌惡性進程之角色
論文名稱(外文):Evaluation of the Roles of Leukocyte Cell-derived Chemotoxin 2 in Ovarian Cancer Progression
指導教授:華國泰
口試委員:簡銘賢魏凌鴻
口試日期:2015-07-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:毒理學研究所
學門:醫藥衛生學門
學類:其他醫藥衛生學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:51
中文關鍵詞:第二型白血球趨化因子卵巢癌惡性進程
外文關鍵詞:LECT2ovarian cancer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肝細胞所分泌的第二型白血球趨化因子 (Leukocyte Cell-Derived Chemotoxin 2; LECT2)為多功能的cytokine。目前已知LECT2為肝癌 (Hepatocellular carcinoma; HCC)的抑癌因子。而於我們先前的研究中發現LECT2可以抑制肝癌細胞上之肝細胞生長因子受體 (MET)的磷酸化,進而影響肝癌細胞的轉移及血管侵犯。此外,我們也發現血液中LECT2濃度和肝癌病人預後有高度相關性。雖然LECT2為分泌性蛋白,但目前未有證據顯示LECT2除了對肝癌細胞有影響外,是否對其他種類的癌細胞也會產生影響。在過去的文獻中指出,卵巢癌在腹腔膜上的adhesion能力跟MET磷酸化有密切關係。因此,我們想要了解LECT2是否會影響對HCC之外腫瘤細胞的惡性進程。本次實驗中我們先以卵巢癌做為實驗材料。首先,將老鼠卵巢癌細胞株ID8以腹腔注射方式打入wild type和LECT2 基因剔除鼠後,發現LECT2基因剔除鼠所形成的腹水體積及腹膜上的腫瘤數目都有明顯增加的現象。另一方面,在in vitro實驗中,也發現卵巢癌細胞株在有LECT2的處理下,migration、invasion和adhesion能力都有下降的趨勢,而這些現象皆跟MET磷酸化受到抑制所相關。而我們也發現LECT2可能會藉由調控integrin α5及β1來抑制卵巢癌細胞的adhesion能力。因此我們推論小鼠在缺乏LECT2之後會促使MET磷酸化增加,進而強化卵巢癌細胞對腹腔的侵犯及轉移能力;造成卵巢癌的惡性進程。綜合以上觀察,LECT2除了對HCC有影響之外,對於其他種類的腫瘤發展也有一定的影響力。因此,對於LECT2在抑癌機制上的探討或許可提供新穎的治療方式及具有發展抗癌藥物的潛力。

The multi-function cytokine, leukocyte cell-derived chemotoxin 2 (LECT2), is secreted by hepatocytes, has been known as a tumor suppressor in hepatocellular carcinoma (HCC). In our previous study, we have demonstrated that LECT2 could inhibit the phosphorylation of hepatocyte growth factor (HGF) receptor as known as MET in HCC cell lines, thus resulted in reduction of migration, invasion of HCC. Moreover, we have also found that the serum level of secreted LECT2 was highly correlated with patients’ prognosis. Although LECT2 is a secreted protein, there is no evidence indicate that LECT2 can involve in the progression of other cancer types. It had been reported adhesion of ovarian cancer cells to peritoneal membrane were highly related to the phosphorylation of MET. Herein, we investigate whether LECT2 can inhibit tumor growth and progression in ovarian cancer. First, the mouse ovarian cancer cell line ID8 was inoculated in wild type or LECT2 knockout mice. The in vivo data shown that the ascites volumes and tumor numbers in LECT2 knockout mice were significantly higher than WT mice. Moreover, we observed the migration, invasion, and cell adhesion abilities of ovarian cancer were all inhibited by LECT2 recombinant protein in vitro, and these phenomenon were correlated with decreasing of MET phosphorylation. We also found integrin α5 and β1 may involve in LECT2-mediated regulation of cell adhesion. We inferred that the increase of peritoneal metastasis of ovarian cancer in LECT2 deficiency mice were, at least in part, through increasing MET phosphorylation. In conclusion, our results demonstrated that LECT2 may involve in the progression of ovarian cancer. Further evaluation of the mechanism of LECT2 on cancer suppression may provide the novel therapeutic methods on anti-cancer drug development.

口試委員審定書--------------------------------------------Ⅰ
誌謝----------------------------------------------------Ⅱ
Abbreviations------------------------------------------Ⅲ
中文摘要------------------------------------------------Ⅳ
Abstract -----------------------------------------------Ⅴ
Introduction -------------------------------------------1
1. Leukocyte cell-derived chemotaxin 2 (LECT2)
2. Ovarian cancer
3. Hepatocyte growth factor (HGF) and its receptor (HGFR/MET) in ovarian cancer
4. Motivation and purpose
Materials and Methods-----------------------------------8
Results------------------------------------------------15
1 Ovarian cancer progression in vivo
2 Suppression of invasion, migration, adhesion ability through inhibition of MET phosphorylation
3 Inhibition ability of LECT2 on adhesion
4 LECT2 expression level in response to progression of ovarian cancer
Discussion---------------------------------------------24
Figures and figure legends ----------------------------30
References --------------------------------------------46


Anson, M., Crain-Denoyelle, A. M., Baud, V., Chereau, F., Gougelet, A., Terris, B., Yamagoe, S., Colnot, S., Viguier, M., Perret, C., and Couty, J. P. (2012a). Oncogenic beta-catenin triggers an inflammatory response that determines the aggressiveness of hepatocellular carcinoma in mice. Journal of Clinical Investigation 122, 586-599.
Anson, M., Crain-Denoyelle, A. M., Baud, V., Chereau, F., Gougelet, A., Terris, B., Yamagoe, S., Colnot, S., Viguier, M., Perret, C., and Couty, J. P. (2012b). Oncogenic beta-catenin triggers an inflammatory response that determines the aggressiveness of hepatocellular carcinoma in mice. The Journal of clinical investigation 122, 586-599.
Arnold, A. G., Otegbeye, E., Fleischut, M. H., Glogowski, E. A., Siegel, B., Boyar, S. R., Salo-Mullen, E., Amoroso, K., Sheehan, M., Berliner, J. L., et al. (2014). Assessment of individuals with BRCA1 and BRCA2 large rearrangements in high-risk breast and ovarian cancer families. Breast cancer research and treatment 145, 625-634.
Baykal, C., Demirtas, E., Al, A., Ayhan, A., Yuce, K., Tulunay, G., Kose, M. F., and Ayhan, A. (2003). Comparison of HGF (hepatocyte growth factor) levels of epithelial ovarian cancer cyst fluids with benign ovarian cysts. Int J Gynecol Cancer 13, 771-775.
Birchmeier, C., Birchmeier, W., Gherardi, E., and Vande Woude, G. F. (2003). Met, metastasis, motility and more. Nature reviews Molecular cell biology 4, 915-925.
Brunton, V. G., MacPherson, I. R., and Frame, M. C. (2004). Cell adhesion receptors, tyrosine kinases and actin modulators: a complex three-way circuitry. Biochimica et biophysica acta 1692, 121-144.
Chen, C. K., Yang, C. Y., Hua, K. T., Ho, M. C., Johansson, G., Jeng, Y. M., Chen, C. N., Chen, M. W., Lee, W. J., Su, J. L., et al. (2014). Leukocyte cell-derived chemotaxin 2 antagonizes MET receptor activation to suppress hepatocellular carcinoma vascular invasion by protein tyrosine phosphatase 1B recruitment. Hepatology 59, 974-985.
Clendenen, T. V., Lundin, E., Zeleniuch-Jacquotte, A., Koenig, K. L., Berrino, F., Lukanova, A., Lokshin, A. E., Idahl, A., Ohlson, N., Hallmans, G., et al. (2011). Circulating inflammation markers and risk of epithelial ovarian cancer. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 20, 799-810.
Comenzo, R. L. (2014). LECT2 makes the amyloid list. Blood 123, 1436-1437.
Corps, A. N., Sowter, H. M., and Smith, S. K. (1997). Hepatocyte growth factor stimulates motility, chemotaxis and mitogenesis in ovarian carcinoma cells expressing high levels of c-met. International journal of cancer Journal international du cancer 73, 151-155.
Huntsman, D., Resau, J. H., Klineberg, E., and Auersperg, N. (1999). Comparison of c-met expression in ovarian epithelial tumors and normal epithelia of the female reproductive tract by quantitative laser scan microscopy. The American journal of pathology 155, 343-348.
Ito, M., Nagata, K., Kato, Y., Oda, Y., Yamagoe, S., Suzuki, K., and Tanokura, M. (2003). Expression, oxidative refolding, and characterization of six-histidine-tagged recombinant human LECT2, a 16-kDa chemotactic protein with three disulfide bonds. Protein expression and purification 27, 272-278.
Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., and Thun, M. J. (2008). Cancer statistics, 2008. CA: a cancer journal for clinicians 58, 71-96.
Junttila, M. R., and de Sauvage, F. J. (2013). Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346-354.
Kwon, Y., Smith, B. D., Zhou, Y., Kaufman, M. D., and Godwin, A. K. (2015). Effective inhibition of c-MET-mediated signaling, growth and migration of ovarian cancer cells is influenced by the ovarian tissue microenvironment. Oncogene 34, 144-153.
Lessan, K., Aguiar, D. J., Oegema, T., Siebenson, L., and Skubitz, A. P. (1999). CD44 and beta1 integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells. The American journal of pathology 154, 1525-1537.
Lo, C. W., Chen, M. W., Hsiao, M., Wang, S., Chen, C. A., Hsiao, S. M., Chang, J. S., Lai, T. C., Rose-John, S., Kuo, M. L., and Wei, L. H. (2011). IL-6 trans-signaling in formation and progression of malignant ascites in ovarian cancer. Cancer research 71, 424-434.
Lu, X. J., Chen, J., Yu, C. H., Shi, Y. H., He, Y. Q., Zhang, R. C., Huang, Z. A., Lv, J. N., Zhang, S., and Xu, L. (2013). LECT2 protects mice against bacterial sepsis by activating macrophages via the CD209a receptor. The Journal of experimental medicine 210, 5-13.
Maulik, G., Madhiwala, P., Brooks, S., Ma, P. C., Kijima, T., Tibaldi, E. V., Schaefer, E., Parmar, K., and Salgia, R. (2002). Activated c-Met signals through PI3K with dramatic effects on cytoskeletal functions in small cell lung cancer. Journal of cellular and molecular medicine 6, 539-553.
Mitra, A. K., Sawada, K., Tiwari, P., Mui, K., Gwin, K., and Lengyel, E. (2011). Ligand-independent activation of c-Met by fibronectin and alpha(5)beta(1)-integrin regulates ovarian cancer invasion and metastasis. Oncogene 30, 1566-1576.
Naora, H., and Montell, D. J. (2005). Ovarian cancer metastasis: integrating insights from disparate model organisms. Nature reviews Cancer 5, 355-366.
Nowak, M., Glowacka, E., Szpakowski, M., Szyllo, K., Malinowski, A., Kulig, A., Tchorzewski, H., and Wilczynski, J. (2010). Proinflammatory and immunosuppressive serum, ascites and cyst fluid cytokines in patients with early and advanced ovarian cancer and benign ovarian tumors. Neuro endocrinology letters 31, 375-383.
Ohtomi, M., Nagai, H., Ohtake, H., Uchida, T., and Suzuki, K. (2007). Dynamic change in expression of LECT2 during liver regeneration after partial hepatectomy in mice. Biomedical research 28, 247-253.
Ong, H. T., Tan, P. K., Wang, S. M., Hian Low, D. T., Ooi, L. L., and Hui, K. M. (2011). The tumor suppressor function of LECT2 in human hepatocellular carcinoma makes it a potential therapeutic target. Cancer gene therapy 18, 399-406.
Plante, M., Rubin, S. C., Wong, G. Y., Federici, M. G., Finstad, C. L., and Gastl, G. A. (1994). Interleukin-6 level in serum and ascites as a prognostic factor in patients with epithelial ovarian cancer. Cancer 73, 1882-1888.
Roszkowski, P., Wronkowski, Z., Szamborski, J., and Romejko, M. (1993). Evaluation of selected prognostic factors in ovarian cancer. European journal of gynaecological oncology 14 Suppl, 140-145.
Saga, Y., Mizukami, H., Suzuki, M., Urabe, M., Kume, A., Nakamura, T., Sato, I., and Ozawa, K. (2001). Expression of HGF/NK4 in ovarian cancer cells suppresses intraperitoneal dissemination and extends host survival. Gene therapy 8, 1450-1455.
Saito, T., Okumura, A., Watanabe, H., Asano, M., Ishida-Okawara, A., Sakagami, J., Sudo, K., Hatano-Yokoe, Y., Bezbradica, J. S., Joyce, S., et al. (2004). Increase in hepatic NKT cells in leukocyte cell-derived chemotaxin 2-deficient mice contributes to severe concanavalin A-induced hepatitis. Journal of immunology 173, 579-585.
Sawada, K., Radjabi, A. R., Shinomiya, N., Kistner, E., Kenny, H., Becker, A. R., Turkyilmaz, M. A., Salgia, R., Yamada, S. D., Vande Woude, G. F., et al. (2007). c-Met overexpression is a prognostic factor in ovarian cancer and an effective target for inhibition of peritoneal dissemination and invasion. Cancer research 67, 1670-1679.
Sourbier, C. (2011). Met and the microenvironment: new insights for ovarian cancer metastasis. Cell adhesion & migration 5, 209-210.
Strobel, T., and Cannistra, S. A. (1999). Beta1-integrins partly mediate binding of ovarian cancer cells to peritoneal mesothelium in vitro. Gynecol Oncol 73, 362-367.
Suh, D. H., Kim, H. S., Kim, B., and Song, Y. S. (2014). Metabolic orchestration between cancer cells and tumor microenvironment as a co-evolutionary source of chemoresistance in ovarian cancer: a therapeutic implication. Biochemical pharmacology 92, 43-54.
Tang, M. K., Zhou, H. Y., Yam, J. W., and Wong, A. S. (2010). c-Met overexpression contributes to the acquired apoptotic resistance of nonadherent ovarian cancer cells through a cross talk mediated by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2. Neoplasia 12, 128-138.
Thibault, B., Castells, M., Delord, J. P., and Couderc, B. (2014). Ovarian cancer microenvironment: implications for cancer dissemination and chemoresistance acquisition. Cancer metastasis reviews 33, 17-39.
Uchida, T., Nagai, H., Gotoh, K., Kanagawa, H., Kouyama, H., Kawanishi, T., Mima, S., Yamagoe, S., and Suzuki, K. (1999). Expression pattern of a newly recognized protein, LECT2, in hepatocellular carcinoma and its premalignant lesion. Pathology international 49, 147-151.
Yamagoe, S., Akasaka, T., Uchida, T., Hachiya, T., Okabe, T., Yamakawa, Y., Arai, T., Mizuno, S., and Suzuki, K. (1997). Expression of a neutrophil chemotactic protein LECT2 in human hepatocytes revealed by immunochemical studies using polyclonal and monoclonal antibodies to a recombinant LECT2. Biochemical and biophysical research communications 237, 116-120.
Yamagoe, S., Kameoka, Y., Hashimoto, K., Mizuno, S., and Suzuki, K. (1998). Molecular cloning, structural characterization, and chromosomal mapping of the human LECT2 gene. Genomics 48, 324-329.
Yamagoe, S., Yamakawa, Y., Matsuo, Y., Minowada, J., Mizuno, S., and Suzuki, K. (1996). Purification and primary amino acid sequence of a novel neutrophil chemotactic factor LECT2. Immunol Lett 52, 9-13.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文