跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/16 18:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅少君
研究生(外文):Shao-Jyun Luo
論文名稱:介質研磨纖維素經噴霧乾燥後的形貌及包覆
論文名稱(外文):Morphology and encapsulation of media milled cellulose after spray drying
指導教授:葉安義葉安義引用關係
口試委員:張永和陳時欣
口試日期:2015-01-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:72
中文關鍵詞:纖維素奈米噴霧乾燥粒徑大小與分布自組裝
外文關鍵詞:cellulosenanospray dryingparticle size and distributionself-assembly
相關次數:
  • 被引用被引用:2
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
粒子因形貌與大小的不同,呈現不同的理化性質,也具有不同的功能性,噴霧乾燥技術可有效控制顆粒的型態,在溶媒蒸發過程中,讓液滴內的顆粒發生自組裝(聚集),液滴內的顆粒大小是影響最終顆粒形貌的因子之一。藉由前人研究可知,5% (w/w)的纖維素經濕式介質研磨45分鐘,再經噴霧乾燥能形成似球狀顆粒,具有作為載體的潛力,因此本實驗進一步探討不同濕式介質研磨時間,所得到不同粒徑大小及分布的纖維素懸浮液,經噴霧乾燥後得到的粉末,分析纖維素粉末的物理性質及表面型態觀察,並以b-胡蘿蔔素作被包覆物質,評估其作為載體的潛力。
以5% (w/w)的纖維素,分別研磨15、30、45及90分鐘後,以進料溫度為130℃,進行噴霧乾燥。隨著介質研磨時間增加,纖維素的粒徑有遞減趨勢,必須將粒徑降至奈米/次微米等級才能發生聚集現象於噴霧乾燥過程中,粒子越小越容易發生聚集;研磨15分鐘經噴霧乾燥的纖維素外觀有縫隙,隨著研磨時間增加,小於1μm 粒徑的粒子數增加,外觀的縫隙減少,隨著粒徑之減小,表面趨於平滑,其表觀密度及表面積亦呈現遞減現象;進一步依孔隙度與密度的數據,得知內部結構緻密;包覆率方面,原材料為2.52%,顯示包覆能力不佳,研磨組研磨時間15、30、45及90分鐘的包覆量分別為19.38、23.57、26.36及21.19 %,皆顯著提升包覆的能力,以研磨45分鐘的條件最佳。


The change in particle morphology has resulted in variations of physicochemical properties and functions. Spray drying is a method to fabricate particles with a controllable size and morphology. During solvent evaporation, colloidal particles were self-assembled inside the droplet toward a close-packed array. With different particle sizes, which is one of the factors aggregating final particle morphology. In our laboratory, spherical cellulose particles have been prepared by utilizing media milling and spray drying. This study was to investigate the effect milling time on morphology and media-milled and spray dried cellulose, its encapsulation efficiency for b-carotene was also evaluated.
5% (w/w) microcrystalline cellulose was media milled for 15, 30, 45 and 90 minutes, and successively was spray dried at 130℃. The data showed that the particle size was decreased as the milling time increased. It appeared that, smaller particles particularly nano/submicron particle were prone to aggregate under the condition of nano/submicron scale particle size. Scanning electron micrograph, the spray dried cellulose powder from 15 min media-milled cellulose exhibited has highly rough surface. When the media milling time increased, the percentages of nano/submicron particles were increased. And the surface spray dried powder became smoother; with a decrease in apparent density and surface area. Data of porosity and density showed that the spray dried cellulose powders were dense particles. Obviously, raw cellulose would not the alike encapsulate b-carotene (encapsulation efficiency of 2.52%). The encapsulation efficiency of media-milled cellulose for 15, 30, 45 and 90 were 19.38, 23.57, 26.36 and 21.19%, respectively. It indicated that size reduction enhanced significantly the encapsulation behavior of cellulose. Among all the milling time tested, 45 min-milling was better choice for encapsulation.


摘要 I
Abstract II
目次 IV
圖目錄 VII
表目錄 VIII
壹、前言 1
貳、文獻回顧 2
2.1 纖維素 2
2.1.1 纖維素之基本結構 2
2.2.2 纖維素之生理功效 4
2.1.3纖維素之應用 6
2.2 b-胡蘿蔔素 9
2.2.1 b-胡蘿蔔素之基本結構與性質 10
2.2.2 b-胡蘿蔔素之生理功效 12
2.3 奈米科技 14
2.3.1 奈米材料的製備 14
2.4 微奈米包覆技術 19
2.4.1噴霧乾燥原理 19
2.4.2 溶劑蒸發誘導自組裝(Evaporation-induced self-assembly, EISA ) 22
2.5 BET 理論 24
2.6 BJH理論 26
參、實驗目的與假說 27
肆、材料與方法 28
3.1 材料 28
3.2 儀器設備 28
3.3 實驗流程及方法 33
3.3.1 纖維素懸浮液製備 33
3.3.2 b-胡蘿蔔素的添加量 33
3.3.3 介質研磨 33
3.3.4 噴霧乾燥 34
3.3.5 水分含量測定 35
3.3.6 回收率測定 35
3.3.7 酒精濃縮置換與臨界乾燥 36
3.3.8 粒徑分析 36
3.3.9 密度量測 37
3.3.10 黏度測定 38
3.3.11 比表面積測定 39
3.3.12 孔隙度(porosity)測定 39
3.3.13 包埋切片穿透式電子顯微鏡 40
3.3.14 包覆率測定 40
伍、實驗架構 42
陸、結果與討論 43
6.1 粒徑大小與分布 43
6.2 纖維素懸浮液的黏度變化 46
6.3 粉末回收率及水分含量分析 47
6.4 掃描式電子顯微鏡 49
6.5 粉末密度量測 54
6.6 粉末比表面積量測 56
6.7 粉末內部結構型態 58
6.8 包覆率測定 60
柒、結論 62
捌、參考文獻 64


于達元。濃度效應對介質研磨纖維素流變性質的影響。國立台灣大學食品
科技研究所碩士論文:台北市,2008。
吳佩璇。介質研磨對纖維素表面性質與巨量礦物元素結合力之影響。國立
台灣大學食品科技研究所碩士論文:台北市,2010。
陳時欣。蔗糖酯對奈米/次微米纖維素懸浮液穩定性之研究。國立台灣大
學食品科技所碩士論文:台北市,2006。
高絹智。多孔性纖維素之製備及其特性。國立台灣大學食品科技研究所碩
士論文:台北市,2013。
徐榜奎。微化處理提升膳食纖維功能性之研究。國立中興大學食品暨應用
生物科技研究所博士論文:台中市,2008。
黃仁毅。纖維素於介質研磨下的破碎模式。國立台灣大學食品科技所碩士
論文:台北市,2007。
劉盈吟。奈米/次微米纖維素之特性及安全性。國立台灣大學食品科技所
碩士論文:台北市,2007。
駱威達。卵磷脂與麥芽糊精對奈米/次微米纖維素懸浮液穩定性及其凍乾
粉末覆水性之研究。國立台灣大學食品科技所碩士論文:台北,2009。

Ahuja, G.; Pathak, K. Porous carriers for controlled/modulated drug delivery. Indian J. Pharm. Sci. 2009, 71, 599-607.
Anderson,J. W.; Baird,P.; Davis Jr, R. H.; Ferreri,S.; Knudtson, M.; Koraym,A.; Waters,V. Williams, C. L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188-205.
Anstey, A. V. Systemic photoprotection with a-tocopherol (vitamin E)and b-carotene. Clin. Exp. Dermatol. 2002, 27, 170–176.
Ayon, A. A.; Cantu, M.; Chava, K.; Agrawal, C. M.; Feldman, M.D.; Johnson, D. Drug loading of Nanoporous TiO2 films. Biomed Mat. 2006, 1, 11-15.
Azizi Samir, M. A. S.; Alloin, F.; Dufresne, A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules. 2005, 6, 612–626.
Baranauskiene’, R.; Venskutonis, P. R.; Dewettinck, K.; Verhe’, R.Properties of oregano (Origanum vulgare L.), citronella (Cymbopogon nardus G.) and marjoram (Majorana hortensis L.) flavors encapsulated into milk protein-based matrices. Food Res. Int. 2006, 39, 413-425.
Barbosa, M. I. M. J.; Borsarelli, C. D.; Mercadante, A. Z. Light stability of spray-dried bixin encapsulated with different edible polysaccharide preparations. Food Res. Int. 2005, 38, 989-994.
Bendich, A. β-carotene and the immune response. Proc. Nutr. Soc. 1991, 50, 263-274.
Beristain, C. I.; Garcı’a, H. S.; Vernon-Carter, E. J. Spray-dried encapsulation of cardamom (Elettaria cardamomum) essential oil with mesquite (Prosopis juliflora) gum. Lebensm. Wiss. Technol. 2001, 34, 398-401.
Brown, L.; Rosner, B.; Willett, W. W.; Sacks, F.M. Cholesterol lowering effects of
dietary fiber: a meta-analysis. Am. J. Clin. Nutr. 1999, 69, 30-42.
Brunauer, S.; Emmett, P. H.; Teller, E. Adsorption of gases in mulyimolecular layers. J. Am. Chem. Soc. 1938, 60, 309-319.
Bylaite, E.; Nylander, T.; Venskutonis, R.; Jonsson, B. Emulsification of caraway essential oil in water by lecithin and blactoglobulin: Emulsion stability and properties of the formed oilaqueousinterface. Colloids Surf. B. 2001, 20, 327-340.
Cassia, R. L. C.; Paulo, R. N. C.; Carol, H. Collins High performance liquid chromatographic determination of the geometrical isomers of b-carotene in several food stuffs. J. Chromatogr. A . 1995, 697, 289-294.
Cheng, k.; Peng,S.; Xu,C.; Sun, S. Porous Hollow Fe3O4 Nanoparticles for targeted delivery and controlled release of cisplatin. J. Am. Chem. Soc. 2009, 131, 10637-10644.
Cook, E. M. Introduction. In Process drying practice. McGraw-Hill:New York. 1991, 3-12.
Combs, G. F. The Vitamins: fundamental aspects in nutrition and health. (3rd ed.). Ithaca: Elsevier Academic Press. 2008.
Cutting, S. M. Bacillus probiotics. Food Microbiology. 2011, 28, 214–220.
Desobry, S. A.; Netto, F. M.; Labuza, T. P. Comparison of spray-drying, drum-drying and freeze-drying for b-carotene encapsulation and preservation. J. Food Sci. 1997, 62, 1158-1162.
Donhowe, E. G.; Kong, F. Beta-carotene: Digestion, Microencapsulation, and In Vitro Bioavailability. Food Bioprocess Tech. 2014, 7, 338-354.
Drusch, S.; Schwarz, K. Microencapsulation properties of two different types of n-octenylsuccinate-derivatised starch. Eur Food Res Technol. 2006, 222, 155-164.
Goodger, E.M. Hydrocarbon fuels, production, properties and performance of liquids and gases. Halsted Press: New York. 1975, 120.
Gouin, S. Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci. Tech. 2004, 15, 330-347.
Gurny, R.; Doelker, E.; Peppas, N. A. Modelling of sustained release of water-soluble drugs from porous, hydrophobic polymers. Biomaterials. 1982, 3, 27-32.
Hsu, P.K.; Chien, P.J.; Chau, C .F. Micronization increase vitamin E carrying and releasing abilities of insoluble fiber. J. Agr. Food Chem. 2008, 56, 2170-2174.
Hu, E. L.; Shaw, D. T. Synthesis and assembly. In Nanostructure Science and Technology, D.L. Lockwood edited. Springer Inc.: New York, USA, 1999, 16.
Johansen, A.; Schafer, T. Effects of interactions between powder particle size and binder viscosity on agglomerate growth mechanisms in a high shear mixer. European journal of pharmaceutical sciences. 2001, 12, 297-309.
Juhnke, M.; Martin, D.; John, E. Generation of wear during the production of drug nanosuspensions by wet media milling. Eur. J. Pharm. Biopharm. 2012, 81, 214-222.
Jyothi, N. V. N.; Prasanna, P. M.; Sakarkar, S. N.; Prabha, K. S.; Ramaiah, P. S.; Srawan, G. Y. Microencapsulation techniques, factors influencing encapsulation efficiency. J. Microencapsul. 2010, 27, 187-197.
Kandlikar, S. G.; Kuan, W. K.; Mukherjee, A. Experimental study of heat transfer in an evaporating meniscus on a moving heated surface. J. Heat transfer. 2005, 127, 244-252.
Karppi, J.; Laukkanen, J. A.; Makikallio, T. H.; Ronkainen, K.; Kurl, S. Low beta-carotene concentrations increase the risk of cardiovascular disease mortality among Finnish men with risk factors. Nutr. Metab. Carbiovasc. Dis. 2012, 22, 921-928.
Kolakovic, R.; Laaksonen, T.; Peltonen, L.; Laukkanen, A.; Hirvonen, J. Spray-dried nanofibrillar cellulose microparticles for sustained drug release. Int. J. Pharm. 2012, 430, 47-55.
Kwade, A.; Blecher, L.; Schwedes , J. Motion and stress intensity of grinding beads in a stirred media mill. Part 2: Stress intensity and its effect on comminution, Powder Technol. 1996, 86, 69-76.
Leung, I.; Tso, M.; Li, W.; Lam, T. Absorption and tissue distribution of zeaxanthin and lutein in rhesus monkeys after taking Fructus lycii (Gou Qi Zi) extract. Invest. Ophthalmol. Vis. Sci. 2001, 42, 466–471.
Li, Z.; Wen, L.; Shao, L.; Chen, J. Fabrication of porous silica nanoparticles and heir
applications in release control. J. Control Release. 2004, 98, 245-254.
Loksuwan, J. Characteristics of microencapsulated b-carotene formed by spray drying
with modified tapioca starch, native tapioca starch and maltodextrin. Food hydrocoll. 2006, 21, 928-935.
Maiani, G.; Caston, M. J.; Catasta, G.; Toti, E.; Cambrodon, I. G.; Bysted, A.; Granado-Lorencio, F.; Olmedilla-Alonso, B.; Knuthsen, P.; Valoti, M.; Bohm, V.; Mayer-Miebach, E.; Behsnilian, D.; Schlemmer, U. Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol. Nutr. Food Res. 2009, 53,194-218.
Masters, K. Spray drying fundamentals: Process stages and layouts. In Spray drying handbook. Halsted Press: New York. 1979a. 21-53.
Masters, K. Spray dryers. G. J. Baker Inc, Industrial drying of foods. New York: Blackie Academic & Professional. 1997, 90-114.
Merisko-Liversidge, E.; Liversidge, G. G.; Cooper, E. R. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci. 2003, 18, 113-120.
Merisko-Liversidge, E.; Liversidge, G. G.. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv. Drug Deliv. Rev. 2011, 63, 427-440.
Miller, P. E.; Snyder, D. C. Phytochemicals and cancer risk: a review of the epidemiological evidence. Nutr. Clin. Pract. 2012, 27, 599-612.
Moehammad, A. W.; Purwiyatno, H. Technical aspects of food fortification. Food and Nutr. Bull. 1998, 19, 101-108.
Nandiyanto, A. B. D.; Okuyama, K. Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Adv.Powder Technol. 2011, 22, 1-19.
Nathalie, L.; Isabelle, D.; Alain, D.; Julien, Bras. Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review. Carbohydr. Polym. 2012, 90, 735-764.
Nunes, I. L.; Mercadante, A. Z. Encapsulation of lycopene using spray-drying and molecular inclusion processes. Braz. Arch. Biol. Techn. 2007, 50, 893-900.
Omenn, G. S.; Goodman, G. E.; Thornquist, M. D.; Balmes, J.; Cullen. M. R.; Glass, A. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovasculardisease.N. Engl. J. Med. 1996, 334, 1150-1155
Orset, S.; Leach, G. C.; Morais, R. Spray-drying of the microalga Dunaliella salina: effects on b-carotene content and isomer composition. J. Agr. Food Chem. 1999, 47, 4782-4790.
van Poppel, G. Epidemiological evidence for b- carotene in prevention of cancer and cardiovascular disease. Eur. J. Clin. Nutr. 1996, 50, 57-61.
Re, M. I. Formulating drug delivery systems by spray drying. Dry. Technol. 2006, 24, 433-446.
Rough, S. L.; Wilson, D. I.; Bayly, A. E.; York, D. W.; Mechanisms in high-viscosity immersion-granulation. Chem. Eng. Sci. 2005, 60, 3777-3793.
Roxane, G.; Tatiana, B. Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions. Biomacromolecules. 2008, 9, 269-277.
Saavedra, J.M.; Tschernia, A. Human studies with probiotics and prebiotics: Clinical
implications. Br. J. Nutr. 2002, 87, 241–246.
Saleh, K.; Vialatte, L.; Guigon, P. Wet granulation in a batch high shear mixer. Chem. Eng. Sci. 2005, 60, 3765-3775.
Schieber, A., Carle, R. Occurrence of carotenoid cis-isomers in food: Technological, analytical and nutritional implications. Trends in Food Sci. Tech.2005. 16, 416-422.
Seidel, S. R.; Stang, P. J. High-symmetry coordination cages via self-assembly. Acc. Chem. Res. 2002. 35, 972-983.
Shabde, V. S.; Emets, S. V.; Mann, U.; Hoo, K. A.; Carlson, N. N.; Gladysz, G. M. Modeling a hollow micro-particle production process. Comput. Chem. Eng. 2005, 29, 2420-2428.
Sher, P.; Insavle, G.; Porathnam, S.; Pawar, A. P. Low density porous carrier drug adsorption and release study by response surface methodology using different solvents. Int. J. Pharm . 2007, 331, 72-83.
Shu, B.; Yu, W.; Zhao, Y.; Liu, X. Study on microencapsulation of lycopene by spray-drying. J. Food Eng. 2006, 76, 664-669.
Siqueira, G.; Bras, J.; Dufresne, A. Luffa cylindrica as a lignocellulosic source of fiber, microfibrillated cellulose, and cellulose nanocrystals. Bioresources. 2010, 5, 727-740.
Slavin, J. L. Dietary fiber and body weight. Nutrients. 2005, 21, 411-418.
Slavin, J. L. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 2013, 5, 1417-1435.
Stratton, S. P.; Liebler, D. C. Determination of singlet oxygenspecific versus radical-mediated lipid peroxidation in photosensitized oxidation of lipid bilayers: effect of beta carotene and alpha-tocopherol. Biochemistry. 1997, 36, 12911-12920.
Tsapis, N.; Dufresne, E. R.; Sinha, S. S.; Riera, C. S.; Hutchinson, J. W.; Mahadevan, L.; Weitz, D. A. Onset of buckling in drying droplets of colloidal suspensions. Physical Review Letters, 2005. 94, 018302.
Tucker, L. A.; Thomas, K. S. Increasing total fiber intake reduces risk of weight and fat gains in women. J. Nutr. 2009, 139, 576–581.
Uetani, K.; Yano, H. Self-organizing capacity of nanocelluloses via droplet evaporation. Soft Matter. 2013, 9, 3396-3401.
Vehring, R. Pharmaceutical particle engineering via spray drying. Pharm. Res. 2008, 25, 999-1022.
de Vos, P.; Faas, M. M.; Spasojevic, M.; Sikkema, J. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int. Dairy J. 2010, 20, 292-302.
Wagner, L. A.; Warthesen, J. J. Stability of spray‐dried encapsulated carrot carotenes. J. Food Sci. 1995, 60, 1048-1053.
Wang, C.; He, C.; Tong, Z.; Liu, X.; Ren, B.; Zeng, F. Combination of adsorption by porous CaCO3 microparticles and encapsulation by polyelectrolyte multilayer films for sustained drug delivery. Int. J. Pharm. 2006, 308, 160-167.
Wang, S.; Langrish, T. A review of process simulations and the use of additives in spray drying. Food Res. Int. 2009, 42, 13-25.
Webb, P. A. Volume and density determinations for particle technologists. Micromeritics Instrument Corp. 2001, 2, 1.
Weber, D.; Grune, T. The contribution of beta-carotene to vitamin A supply of humans. Mol. Nutr. Food Res. 2012, 56, 251–258.
Whitesides, G. M.; Grzbowski, B. Self-assembly at all scales. Sciencei, 2002, 295, 2418-2421.
WHO. Global prevalence of vitamin A deficiency in populations at risk 1995–
2005. WHO global database on vitamin A deficiency. Geneva (Switzerland): World Health Organization. 2009.
Wolf, G. Retinoids and carotenoids as inhibitors of carcinogenesis and inducers of cell‐cell communication. Nutrition reviews. 1992, 50, 270-274.
Yang, W. L.; Hsiau, S. S. Wet granular materials in sheared flows. Chem. Eng. Sci. 2005, 60, 4265-4274.
Yildir, E.; Kolakovic, R.; Genina, N.; Trygg, J.; Gericke, M.; Hanski, L.; Henrik, E.; Jukka, R.; Mikko, T.; Pia, V.; Pedro, F.; Sandler, N. Tailored beads made of dissolved cellulose—investigation of their drug release properties. Int. J. Pharm. 2013, 456, 417-423.
Yonekura, L.; Nagao, A. Intestinal absorption of dietary carotenoids. Mol. Nutr. Food Res. 2007, 51, 107-115.
Zhang, L. X.; Cooney, R. V.; Bertram, J. S. Carotenoids enhance gap junctional communication and inhibit lipid peroxidation in C3H/lOT1/2 cells: relations hip to their cancer chemopreventive action. Carcinogensis. 1991, 12, 2109-2114.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top