跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 10:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳惠媛
研究生(外文):Huei-Yuan Chen
論文名稱:蜂王漿與蜂子之血管緊縮素轉化酶抑制胜肽的研究
論文名稱(外文):Study of the angiotensin I converting enzyme inhibitory peptides from royal jelly and bee larva
指導教授:鄭光成鄭光成引用關係
指導教授(外文):Kuan-Chen Cheng
口試委員:游若萩彭及忠劉啟德
口試委員(外文):Roch-Chui YuChi-Chung PengChi-Te Liu
口試日期:2015-06-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:84
中文關鍵詞:蜂王漿蜂子高血壓血管緊縮素轉化酶抑制胜肽
外文關鍵詞:royal jellybee larvahypertensionACE-inhibitory peptides
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究目的欲以蜂王漿及蜂子之水溶性蛋白,以人體腸胃道酵素(胃蛋白酶、胰蛋白酶)進行水解,探討水溶性蛋白及其水解物對血管緊縮素轉化酶之抑制活性。分析不同水解時間下的水解程度及血管緊縮素轉化酶抑制活性。結果顯示,蜂王漿蛋白使用胃蛋白酶水解36小時後,水解度為60.63%,其血管緊縮素轉化酶抑制率為84.88%;而胰蛋白酶水解36小時後水解度為89.66%,其血管緊縮素轉化酶抑制率為94.02%。蜂子蛋白組別,使用胃蛋白酶水解36小時後,水解度為50.88%,其血管緊縮素轉化酶抑制率為95.12%;而胰蛋白酶水解36小時後水解度為50.75%,其血管緊縮素轉化酶抑制率為97.35%。再取各組水解36小時之水解液經不同分子量之濾膜區分(MWCO 5,000及 2,000),其中以蜂子蛋白經胰蛋白酶水解36小時的組別有最佳的抑制活性,分子量在> 5,000、2,000~5,000及2,000以下之血管緊縮素轉化酶抑制能力(IC50)分別為1.53、1.08及0.67 mg/mL。可以看出隨著分子量越小,有更好的抑制活性。再以帶電荷性質的差異,通過弱陰離子交換管柱(DEAE column)加以區分,由兩種樣品所得到抑制活性(IC50)最佳的兩個劃分(蜂王漿:0.32 mg/mL; 蜂子:0.17 mg/mL)再經高效能液相層析儀進一步純化。綜合以上結果可知,蜂王漿與蜂子蛋白在經過一系列水解、純化的步驟,可製備具有降血壓活性之短鏈胜肽,具有開發成健康食品之潛力。

  In this research, water soluble protein of RJ and bee larva will be extracted and then hydrolyzed in vitro by gastrointestinal enzymes, pepsin and trypsin. After enzymatic treatment for 36 h, the angiotensin converting enzyme (ACE) inhibitory activities of the protein hydrolysates were evaluated. The results revealed that: in RJ group, that the degree of hydrolysis (DH) of the hydrolysate by pepsin for 36 h was 60.63% and the ACE inhibitory activity was 84.88%. While the DH of the hydrolysate by trypsin for 36 hours was 89.66 % and the ACE inhibitory activity was 94.02%. As for the bee larva group, the DH of the hydrolysate by pepsin for 36 h was 50.88% and the ACE inhibitory activity was 95.12%. While the DH of the hydrolysate by trypsin for 36 hours was 50.75% and the ACE inhibitory activity was 97.35%. Furthermore, the bioactive peptides in RJ and bee larva protein hydrolysate were purification by microfiltration (MWCO 5,000 and 2,000) and anion ion-exchange column (DEAE column). Two active fractions (IC50 value are 0.32 and 0.17 mg/mL) derived from royal jelly and bee larva which hydrolyzed by trypsin were purification and desalted by high performance liquid chromatography. These results indicated that, after hydrolyzed with protease, royal jelly and bee larva both have potential to develop antihypertensive functional foods.

中文摘要 I
英文摘要 II
圖目錄 VI
表目錄 VIII
前言 1
壹、文獻探討 2
一、蜂王漿及蜂子 2
(一)蜂王漿及蜂子簡介 2
(二)蜂王漿及蜂子之組成 4
(三)生理活性及保健功效 7
二、蛋白水解胜肽 8
(一)蛋白質進一步水解的目的及優點 8
(二)蛋白質水解方法 13
三、高血壓 13
(一) 高血壓簡介 13
(二)高血壓分類 14
(三)高血壓治療藥物 17
四、血管緊縮素轉化酶對血壓的調控關係 19
(一) 血管緊縮素轉化酶簡介 19
(二) 血管緊縮素轉化酶影響血壓的機制 19
五、血管緊縮素轉化酶抑制劑降血壓作用 21
(一)血管緊縮素轉化酶抑制劑對於血壓調控之機制 21
(二)血管緊縮素轉化酶抑制劑來源及其發現 21
貳、材料與方法 26
第一部分:樣品基本成分分析 26
第二部分:蜂王漿及蜂子蛋白水解液製備 29
1. 蜂王漿及蜂子中水溶性蛋白質的萃取 30
2. 蜂王漿及蜂子蛋白質水解液的製備 31
3. 聚丙醯胺膠體電泳分析 31
4. Tricine-SDS PAGE 32
5. 水解度測定 35
第三部分:蛋白水解液之抗高血壓機能性 35
1. 血管緊縮素轉化酶活性抑制試驗 36
第四部分:血管緊縮素轉化酶抑制肽的純化 38
1. 以不同分子量膜過濾(microfiltration)分離 38
2. 陰離子交換(anion exchange)樹脂層析分離 39
3. 高效能液相層析(high performance liquid chromatography)純化 39
五、統計分析 40
参、結果與討論 41
一、樣品基本成分及其水解液的製備 41
1. 基本組成分 41
2. 蜂王漿蛋白、蜂子蛋白分別以胃蛋白酶和胰蛋白酶作用之水解率 43
3. 不同水解時間下之蛋白質電泳分析 46
二、蛋白質水解液之調節血壓機能性 52
1. 蜂王漿、蜂子蛋白水解液抑制血管緊縮素轉化酶能力 52
三、血管緊縮素轉化酶抑制肽的純化 55
1. 蜂王漿及蜂子蛋白水解液之膜過濾區分物抑制血管緊縮素轉化酶能力 55
2. 陰離子交換樹脂純化 57
肆、結論 61
伍、參考文獻 62
陸、附錄 67
柒、作者小傳 85


FAO, http://www.fao.org/docrep/w0076e/w0076e00.htm
山口庚兒。1998。蜂子粉末的營養療效。第33-60頁。世貿出版社。台北。
安奎、何鎧光、陳裕文。2004。養蜂學。第363-364頁。華香園出版社。台北。
李錦楓。2002。蜂產品的保健功能。健康世界 199(319):56-58。台北。
中華民國國家標準。1984。食品中水分之檢驗方法,CNS5033,N6114。經濟部標準檢驗局。台北。台灣。
中華民國國家標準。1984。食品中粗灰分之檢驗方法,CNS5034,N6115。經濟部標準檢驗局。台北。台灣。
國人十大死因統計結果摘要。2014。臺灣地區2011-2013國人十大死因統計結果
摘要。行政院衛生署。台北。台灣。
A.O.A.C. 1990. Official methods of analysis. 928.08 Nitrogen in meat: Kjeldahl method. 15th ed. Association of Official Analytical Chemists, Washington, D. C.
Ariyoshi, Y. Angiotensin-converting enzyme-inhibitors derived from food proteins. Trends Food Sci Technol. 1993, 4(5), 139-144.
Beto, J. A. Quality of life in treatment of hypertension. A meta analysis of clinical trials. Am. J. Hypertens. 1992, 5, 125.
Binevski, P. V.; Sizova, E. A.; Pozdnev, V. F.; ; Kost, O. A. Evidence for the negative cooperativity of the two active sites within bovine somatic angiotensin-converting enzyme. Febs Letters. 2003, 550(1-3), 84-88.
Byun, H. G.; Kim, S. K. Structure and activity of angiotensin I converting enzyme inhibitory peptides derived from Alaskan Pollack skin. J. Biochem. Mol. Biol 2002, 35, 239-243.
Chaves-López, C.; Serio, A.; Paparella, A.; Martuscelli, M.; Corsetti, A.; Tofalo, R.; Suzzi, G. Impact of microbial cultures on proteolysis and release of bioactive peptides in fermented milk. Food Microbiol. 2014, 42, 117-121
Church, F. C.; Swaisgood, H. E.; Porter, D. H.; Catignani, G. L.
Spectrophotometric assay using ortho-phthaldialdehyde for determination of proteolysis in milk and isolated milk-proteins. J Dairy Sci, 1983, 66(6), 1219-1227.
Cheung, H. S.;Wang, F. L.; Ondetti, M. A.; Sabo, E. F.; Cushman, D. W. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. J. Biol. Chem. 1980, 25, 401-407.
Clare, D. A.; Swaisgood, H. E. Bioactive milk peptides: a prospectus. J. Dairy. Sci. 2000, 83(6), 1187-1195.
Cushman, D.W.; Ondetti, M. A. Design of angiotensin-converting enzyme inhibitors. Nature Medicine. 1999, 5, 1110-1113.
Cushman, D. W.; Cheung, H. S. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmaco. 1971, 20(7), 1637-1648.
Diet, F.; Pratt, R. E.; Berry, G. J.; Momose, N.; Gibbons, G. H.; Dzau, V. J. Increased accumulation of tissue ACE in human atherosclerotic coronary artery disease. Circ. Res. 1996, 94, 2756-2767.
Erdos, E. G. Angiotensin I converting enzyme. Circ. Res. 1975, 36: 247-255
Fauci, A.; Braunwald, E.; Kasper, D.; Hauser, S.; Longo, D.; Jameson, J.; Loscalzo, J. Harrison’s principles of internal medicine. 2008, New York: Mc Graw Hill Medical.
Ferreira, I. M. P. L. V. O.; Pinho, O.; Mota, M. V.; Tavares, P.; Pereira, A.; Goncalves, M. P.; Torres, D.; Rocha, C.; Teixeira, J. A. Preparation of ingredients containing an ACE-inhibitory peptide by tryptic hydrolysis of whey protein concentrates. Int. Diary. J. 2007, 17, 481-487.
Fujiwara, S.; Imai, J.; Fujiwara, M.; Yaeshima, T.; Kawashima, T.; Kobayashi, K.
A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. J Biol Chem. 1990, 265(19), 11333-11337.
Guyton, A. C. Textbook of medical physiology. 1991, 8th ed. Philadelphia: W. B. Saunders.
Hansen, K.; Nyman, U.; Smitt, U. W.; Adsersen, A.; Gudiksen, L.; Rajasekharan, S.; Pushpangadan, P. In vitro screening of traditional medicines for anti-hypertensive effect based on inhibition of the angiotensin converting enzyme (ACE). J Ethnopharmacol. 1995, 48(1), 43-51.
Hidaka, S.; Okamoto, Y.; Uchiyama, S.; Nakatsuma, A.; Hashimoto, K.; Ohnishi, S. T.; Yamaguchi, M. Royal jelly prevents osteoporosis in rats: beneficial effects in ovariectomy model and in bone tissue culture model. Evid Based Complement Alternat Med. 2006, 3(3), 339-348.
Howe, S. R.; Dimick, P. S.; Benton, A. W. Composition of freshly harvested and commerical royal jelly. J. Apic. Res. 1985, 24, 52-61.
Hooper, N. M.; Turner, A. J. Isolation of two differentially glycosylated forms of peptidyl-dipeptidase A (angiotensin converting enzyme) from pig brain: a re-evaluation of their role in neuropeptide metabolism. Biochem. J. 1987, 241, 625-633.
Hyman, B. N.; Moser, M. Hypertension update. Surv Ophthalmol. 1996, 41(1), 79-89.
Krause, M. V.; Mahan, L. K. 1979 Food, nutrition and diet therapy. 6th ed. W. B.
Lahl, W. J.; Braun, S. D. Enzymatic production of protein hydrolysates for food use. Food Technol, 1994, 10, 68-71.
Leibach, F. H.; Ganapathy, V. Peptide transporters in the intestine and the kidney. Ann Rev. Nutr. 1996, 16, 99-119.
Lo, WMY.; Li-Chan, E. C. Angiotensin I converting enzyme inhibitory peptides from in vitro pepsin-pancreatin digestion of soy protein. J. Agric Food Chem, 2005, 53, 3369-3376.
Matsui, T.; Yukiyoshi, A.; Doi, S.; Sugimoto, H.; Yamada, H.; Matsumoto, K.
Gastrointestinal enzyme production of bioactive peptides from royal jelly
protein and their antihypertensive ability in SHR. J Nutr Biochem. 2002,
13(2), 80-86.
Manlry, C. H.; Ahmedi, S. The development of process flavors. Trends Food Sci. Technol. 1995, 6, 46-51.
Meisel, H. Multifunctional peptides encrypted in milk proteins. Biofactors. 2004, 21(1-4), 55-61.
Melampy, R. M.; Jones, D. B. Chemical composition and vitamins content of royal jelly, Proc. Soc. Expt. Biol. and Med. 1939, 41, 382-388.
Mishima, S.; Suzuki, K. M.; Isohama, Y.; Kuratsu, N.; Araki, Y.; Inoue, M.; Miyata, T. Royal jelly has estrogenic effects in vitro and in vivo. J Ethnopharmacol. 2005, 101(1-3), 215-220.
Otani, S.; Matsui, I.; Kuramoto, A.; Morisawa, S. Induction of ornithine decarboxylase in guinea pig lymphocytes. Synergistic effect of diacylglycerol and calcium, Eur. J. Biochem. 1985, 147, 27-31
Saito, Y.; Wanezaki, K.; Kawato, A.; and Imayasu, S. Structure and activity of angiotensin-converting enzyme inhibitory peptides from sake and sake lees. Biosci. Biotech. Biochem. 1994, 58, 1767-1771.
Schoolwerth, A. C.; Sica, D. A.; Ballermann, B. J.; Wilcox, C. S. Renal considerations in angiotensin converting enzyme inhibitor therapy - A statement for healthcare professionals from the council on the kidney in cardiovascular disease and the council for high blood pressure research of the American Heart Association. Circulation. 2001, 104(16), 1985-1991.
Soottawat, B.; Michael, T. M. Protein hydrolysates from pacific whiting solid wastes. J. Agri. Food Chem. 1997, 45(9), 3423-3430
Tokunaga, K. H.; Yoshida, C.; Suzuki, K. M.; Maruvyama, H.; Futamura, Y.; Araki, Y.; Mishima, S. Antihypertensive effect of peptides from royal jelly in spontaneously hypertensive rats. Biol. Pharm. Bull. 2004, 27(2), 189-192
Turgeon, S. L.; Gauthier, S. F. Whey peptide fractions obtained with a two step ultrafiltration process: production and characterization. J. Food. Sci. 1990, 55, 106-110
Velletri, P. A. Testicular angiotensin I-converting enzyme (E.C. 3.4.15.1). Life Sci. 1985, 36(17), 1597-1608.
Vittek, J. Effect of royal-Jelly on serum-lipids in experimental-animals and humans with atherosclerosis. Experientia. 1995, 51(9-10), 927-935.
Xiao, X.; Luo, X.; Chen, B.; Yao, S. Determination of angiotensin converting enzyme inhibitory activity by high-performance liquid chromatography/electrospray-mass spectrometry. J. Chromatogr B Analyt Technol Biomed Life Sci. 2006, 834(1-2), 48-54.
Yang, X. Y.; Yang, D. S.; Wei, Z.; Wang, J. M.; Li, C. Y.; Hui, Y., Wang, J. G. 10-Hydroxy-2-decenoic acid from Royal jelly: a potential medicine for RA. J Ethnopharmacol. 2010, 128(2), 314-321.
Zou, P.; Wang, J. L.; He, G. Q.; Wu, J. Purification, identification, and in vivo activity of angiotensin I-converting enzyme inhibitory peptide, from Ribbonfish (Trichiurus haumela) backbone. J. Food. Sci. 2014, 79, C1-C7.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top