跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/27 20:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳冠融
研究生(外文):Kuan-Jung Chen
論文名稱:利用多層包埋技術維持植酸酶於受熱時之活性
論文名稱(外文):Multilayer encapsulation maintaining enzyme activity of phytase during thermal treatment
指導教授:蔣丙煌蔣丙煌引用關係
口試委員:曾慶瀛江伯源張哲朗
口試日期:2015-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:103
中文關鍵詞:植酸酶打粒噴霧乾燥流動床
外文關鍵詞:phytasepelletingspray dryfluid bed
相關次數:
  • 被引用被引用:1
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
植酸酶是常見的飼料添加物,隨著環保意識抬頭,在2000年以後應用越來越廣泛,其主要功用是分解植物中所含有的植酸,以增加無機磷的生物利用率,而植酸酶屬於熱敏感型酵素,外界溫度高於80℃會有劇烈失活的現象。由於飼料打粒(pelleting)的過程需使用高溫蒸氣,會使植酸酶失活,因此目前大部分都是於飼料打粒後,以外噴的方式塗佈液態之植酸酶於飼料顆粒上,唯外噴存在塗佈不均勻及操作之不便等問題,造成飼料加工上之困擾。因此,本研究旨在藉由多層包埋的方式來製作植酸酶乾燥粉粒,增加植酸酶之熱穩定性,所生產之植酸酶乾燥粉粒可以直接與飼料混合,使飼料之加工流程更簡單便利。本研究之最大的課題為選擇適當的包材與搭配適當的包埋技術。
由先前的研究發現甘露醇具有當作噴霧乾燥過程中載體的能力且具備比熱隨溫度上升而上升的性質。流動床包覆是在製藥工業上常見的包覆方式,壁材的選擇上須具有黏著性,以利在乾燥的過程中包裹於粉體外。本研究係利用甘露醇當作植酸酶在噴霧乾燥時之載體,使植酸酶與甘露醇形成Matrix的構造,再以阿拉伯膠與海藻糖在噴霧乾燥的粉體外進行包衣。目前實驗結果顯示,以此包覆方式能夠有效提高植酸酶在高溫下的耐受性,在115℃的環境下乾熱處理10分鐘後,利用甘露醇噴霧乾燥法包埋之植酸酶可維持82%的活性,而再以阿拉伯膠進行流動床包埋則可維持90%以上的活性。而在100℃溼熱處理5分鐘僅有有經過流動床進行二層包埋的植酸酶粉體具有部分活性。本研究結果除了驗證甘露醇與變性大豆分離蛋白具有做為噴霧乾燥時包埋生物活性物質之載體外亦可推斷藉由噴霧乾燥與流動床包埋之植酸酶粉體是能夠提升植酸酶之熱穩定性。


Phytases have gathered considerable attention in recent years due to their applications in human and animal nutrition, environmental protection and biotechnology. Phytase is incorporated into commercial poultry, swine, and fish diets to improve the availability of phosphorus, minerals, amino acids, and energy. However, phytase is thermally unstable, loss of activity often occure at processing temperature higher than 80C. As the temperature goes over 87C during steam pelleting of feed, the phytase activity would decrease drastically 66%.
Previous studies have shown that the encapsulation is a good method to increase the enzyme thermal stability. Therefore, the development of a suitable method to protect phytase with high thermal tolerance is a big challenge for feed industry. The encapsulation technology has been widely used by the food industry for more than 60 years. Encapsulation involves entrapping active compounds/ enzyme(s) within a semipermeable membrane. There are lots of encapsulation techniques such as emulsification, solvent evaporation, phase separation, co-crystallization, etc., but spray-drying is the most commonly used technology due to its continuous production and easiness of industrialization. But, how to choose the suitable wall material is still a big challenge.
The objective of this study is to investigate suitable enzyme encapsulation methodology to improve thermal stability. For this purpose, we have developed two different encapsulation systems: System A, spray dry powder with D-mannitol and soy protein isolate; and System B, fluid bed powder with gum arabic and trehalose. System A composed of D-mannitol(15%), soy protein isolated(5%), while System B composed of gum Arabic(20%), trehalose(5%)
Phytase on exposure to 115C, dry heat treatment for 10 minutes shows 82% activity retention when encapsulated with D-mannitol and soy protein isolate spray drying, while gum arabic and trehalose encapsulation by fluid bed showed 90% activity retention. During wet heat treatment for 5 minutes only the phytase encapsulated by fluid bed could keep partial activity. The research have demonstrated that encapsulation with suitable bio-polymers using spray drying and fluid bed technology could indeed protect phytase from losing enzyme activity.


中文摘要 i
Abstract iii
第一章 前言 1
第二章 文獻回顧 2
2-1 植酸、植酸酶 2
2-1-1 植酸 (phytate) 2
2-1-2 植酸酶的作用 4
2-1-3 植酸酶的應用 6
2-1-4 植酸酶的熱穩定性 7
2-2 植酸酶與飼料加工之關係 9
2-2-1 飼料製程 9
2-2-2 打粒 (pelleting) 11
2-2-3 植酸酶的添加 11
2-3 包埋 12
2-3-1 包埋技術 12
2-3-2 芯材 (core material) 14
2-3-3 壁材(well material) 14
2-3-4 包埋技術 18
2-4 噴霧乾燥 (spray-dry) 24
2-4-1 噴霧乾燥機的構造與原理 24
2-4-2 噴霧乾燥的應用 26
2-5 流動床包覆 (Fluid-bed coating) 27
2-5-1 流動床機的構造與原理 27
2-6-1 甘露醇 (D-mannitol) 30
2-6-2 大豆分離蛋白 (Soy protein isolate) 34
2-6-3 阿拉伯膠 (gum arabic) 37
2-6-4 海藻糖(trehalose) 39
第三章 實驗架構 43
3-1. 噴霧乾燥 43
3-2. 流動床包覆 44
第四章 材料與方法 45
4-1 實驗材料 45
4-2 實驗藥品 45
4-3 實驗儀器 46
4-4 實驗方法 47
4-4-1 甘露醇-變性大豆分離蛋白噴霧乾燥包埋植酸酶 47
4-4-2海藻糖-阿拉伯膠之流動床包埋噴霧乾燥粉體 49
4-4-3 海藻糖-阿拉伯膠之流動床包埋噴霧乾燥粉體(加厚型) 49
4-4-4 甘露醇-大豆分離蛋白噴霧乾燥包埋植酸酶 51
4-4-5 阿拉伯膠-海藻糖噴霧乾燥包埋植酸酶 51
4-4-6 D-甘露醇-大豆分離蛋白包覆酸酶酵素粉末 51
4-5 分析方法 53
4-5-1 酵素活性測定方法(Danisco Phytase in Feed Method of Analysis) 53
4-5-2 粉粒體細部構造 55
4-5-3真密度(True density) 55
4-5-4 粉體粒徑分佈(Particle size distribution) 55
4-6 酵素粉體熱穩定性分析 57
4-6-1 對照組 57
4-6-2 乾熱處理 57
4-6-3 濕熱處理 58
第五章 結果與討論 59
5-1 植酸酶初酵素液熱穩定性分析 59
5-2 壁材選擇之討論 61
5-3 噴霧乾燥植酸酶粉 62
5-3-1 噴霧乾燥法包埋植酸酶濕熱處理活性分析 62
5-3-2 噴霧乾燥植酸酶粉之型態 65
5-3-3 討論 72
5-4 流動床包埋噴霧乾燥粉 74
5-4-1 流動床包埋D-甘露醇-變性大豆分離蛋白粉粒的熱穩定性分析與其粒子型態 74
5-4-2 加厚型阿拉伯膠-海藻糖流動床包覆植酸酶噴霧乾燥粉粒的熱穩定性分析與其粒子型態 79
5-4-3 D-甘露醇-大豆分離蛋白流動床包覆阿拉伯膠-海藻糖植酸酶粉 85
5-4-4 討論 88
5-5 植酸酶粉失活動力學分析 89
5-6 植酸酶粉粒體之物理性質 91
5-6-1 植酸酶粉體之真密度(True density)變化 91
5-6-2噴霧乾燥粉體粒徑大小 93
第六章 結論 96
第七章 參考文獻 97


張如意、馬曉建、王根燦、范前進。2009。植物性飼料中植酸磷水解度測定方法的研究。糧  食與飼料工業:48-49。
張東利、郝東升、舒安慶、張維蔚。2005。流化床噴霧造粒技術進展。化學工業與工程   22(4):289-295。
Augustin, M. A.; Hemar, Y., Nano- and micro-structured assemblies for encapsulation of food ingredients. Chemical Society reviews 2009, 38, 902-12.
Barreca, D.; Lagana, G.; Magazu, S.; Migliardo, F.; Gattuso, G.; Bellocco, E., FTIR, ESI-MS, VT-NMR and SANS study of trehalose thermal stabilization of lysozyme. International journal of biological macromolecules 2014, 63, 225-32.
Barrow, C. J.; Nolan, C.; Holub, B. J., Bioequivalence of encapsulated and microencapsulated fish-oil supplementation. Journal of Functional Foods 2009, 1, 38-43.
Bernard F. Gibbs, S. K., Inteaz Alli and Catherine N. Mulligan, Encapsulation in the food industry : a review. International Journal of Food Sciences and Nutrition 1999.
Bing-Lan Liu, C.-H. J., Yew-Min Tzeng, The Induction and Characterization of Phytase and Beyond. Enzyme and microbial technology 1998, 22, 415-424.
Bing-Lan Liu, C.-H. J., Yew-Min Tzeng, Effect of immobilization on pH and thermal stability of Aspergillus ficuum phytase. Enzyme and microbial technology 1999.
Bo Tong, R.-B. L., Chang-Gong Meng, Feng-Yun Yu, Shou-Hua Ji, Zhi-Cheng Tan, Heat Capacities and Nonisothermal Thermal Decomposition Reaction Kinetics of D-Mannitol. Journal of Chemical and Engineering Data 2010, 55, 119-124.
Bye, J. W.; Cowieson, N. P.; Cowieson, A. J.; Selle, P. H.; Falconer, R. J., Dual effects of sodium phytate on the structural stability and solubility of proteins. Journal of agricultural and food chemistry 2013, 61, 290-5.
Cao, L.; Wang, W.; Yang, C.; Yang, Y.; Diana, J.; Yakupitiyage, A.; Luo, Z.; Li, D., Application of microbial phytase in fish feed. Enzyme and microbial technology 2007, 40, 497-507.
David B. Mitchell, K. V., Bernd J. Weimann, Luis Pasamontes, Adolphus P. G. M. van Loon, The Phytase Subfamily of Histidine Acid Phosphatases: Isolation of Genes for Two Novel Phytases from the Fungi Aspergillus Terreus and Myceliophthora Thermophila. Microbiology 1997, 143, 245-252.
de Vos, P.; Faas, M. M.; Spasojevic, M.; Sikkema, J., Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal 2010, 20, 292-302.
Deng, X.-X.; Chen, Z.; Huang, Q.; Fu, X.; Tang, C.-H., Spray-drying microencapsulation of β-carotene by soy protein isolate and/or OSA-modified starch. Journal of Applied Polymer Science 2014, 131, n/a-n/a.
E. Teunou , D. P., Batch and continuous fluid bed coating – review and state of the art. Journal of Food Engineering 2002.
Ernst Graf, J. W. E., Antioxidant functions of phytic acid. Free Radical Biology and Medicine 1990, 8, 61-69.
Flores, F. P.; Singh, R. K.; Kong, F., Physical and storage properties of spray-dried blueberry pomace extract with whey protein isolate as wall material. Journal of Food Engineering 2014, 137, 1-6.
Garrett, J. B.; Kretz, K. A.; O''Donoghue, E.; Kerovuo, J.; Kim, W.; Barton, N. R.; Hazlewood, G. P.; Short, J. M.; Robertson, D. E.; Gray, K. A., Enhancing the Thermal Tolerance and Gastric Performance of a Microbial Phytase for Use as a Phosphate-Mobilizing Monogastric-Feed Supplement. Applied and Environmental Microbiology 2004, 70, 3041-3046.
Gouin, S., Microencapsulation industrial appraisal of existing technologies and trends. Trends in Food Science & Technology 2004, 15, 330-347.
Ha, N.-C.; , B.-C. O.; , S. S.; Oh, K. Y. C. a. B.-H., Crystal structures of a novel, thermostable phytase in partially and fully calcium-loaded states. Nature Structural and Molecular Biology 2000, 7, 147-153.
Huq, T.; Khan, A.; Khan, R. A.; Riedl, B.; Lacroix, M., Encapsulation of probiotic bacteria in biopolymeric system. Critical reviews in food science and nutrition 2013, 53, 909-16.
Jouni Vielmaa, Santosh P Lallb, Juha Koskelaa, Franz-Josef Schönerc, Pirjo Mattilad, Effects of dietary phytase and cholecalciferol on phosphorus bioavailability in rainbow trout (Oncorhynchus mykiss). Aquaculture 1998, 163, 309-323.
Jyothsna Darukaradhya; Michael Phillips; Kailasapathy, K., Effect of encapsulation on the survival of probiotic bacteria in the presence of starter and non-starter lactic acid bacteria in Cheddar cheese over a 6-month ripening period. International Journal of Fermented Foods 2013, 2, 63-76.
K. O''Riordan; D. Andrews; K. Buckle; Conway, P., Evaluation of microencapsulation of a Bifidobacterium strain with starch as an approach to prolonging viability during storage. Journal of Applied Microbiology 2001, 91, 1059-1066.
Kailasapathy, K., Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. LWT - Food Science and Technology 2006, 39, 1221-1227.
Kaori Jono, H. I., Masahito Miyamoto, Yoshinobu Fukumori, A review of particulate design for pharmaceutical powders and their production by spouted bed coating. Powder Technology 2000.
Kashappa Goud H. Desai; Park, H. J., Recent Developments in Microencapsulation of Food Ingredients. Drying Technology 2005.
Keerati-u-rai, M.; Corredig, M., Heat-induced changes in oil-in-water emulsions stabilized with soy protein isolate. Food Hydrocolloids 2009, 23, 2141-2148.
Ken-ichi Izutsu; Sumie Yoshioka; Terao, T., Effect of Mannitol Crystallinity on the Stabilization of Enzymes during Freeze-Drying. Chemical and Pharmaceutical Bulletin 1994, 42, 5-8.
Loop, S. A.; Lilly, K. G. S.; Shires, L. K.; Gehring, C. K.; Beaman, K. R.; Persia, M. E.; Moritz, J. S., The phytase analytical activity of pelleted diets may not adequately describe efficacy in the bird. The Journal of Applied Poultry Research 2012, 21, 492-501.
Manfred Kroger; Kathleen Meister; Kava, R., Low-calorie Sweeteners and Other Sugar Substitutes: A Review of the Safety Issues. Comprehensive Reviews in Food Science and Food Safety 2006, 5, 35-47.
Miller, T. G. Swine Feed Efficiency Influence of Pelleting; 2012.
Miriani, M.; Keerati-u-rai, M.; Corredig, M.; Iametti, S.; Bonomi, F., Denaturation of soy proteins in solution and at the oil–water interface: A fluorescence study. Food Hydrocolloids 2011, 25, 620-626.
Mohamed E Osman; Alan R. Menzies; Peter A. Williams; Glyn O. Phillips; Baldwin, T. C., The molecular characterisation of the polysaccharide gum from Acacia senegal. Carbohydrate Research 1993, 246, 303-318.
Mujumdar, A. S., Handbook of Industrial Drying. 2006.
Murugesan, R.; Orsat, V., Spray Drying for the Production of Nutraceutical Ingredients—A Review. Food and Bioprocess Technology 2011, 5, 3-14.
N.J. Zuidam; Shimoni, E., Overview of Microencapsulates for Use in Food Products or Processes and Methods to Make Them. Heart and vessels 2004, 19, 19-22.
Nedovic, V.; Kalusevic, A.; Manojlovic, V.; Levic, S.; Bugarski, B., An overview of encapsulation technologies for food applications. Procedia Food Science 2011, 1, 1806-1815.
Nelson Ward, M. V. V. What is the difference between a 3-and a 6-phytase?; 2012.
Nesterenko, A.; Alric, I.; Silvestre, F.; Durrieu, V., Comparative study of encapsulation of vitamins with native and modified soy protein. Food Hydrocolloids 2014, 38, 172-179.
Partridge, D. G., New-generation phytase with high thermostability. PIG PROGRESS 2007.
Patist, A.; Zoerb, H., Preservation mechanisms of trehalose in food and biosystems. Colloids and surfaces. B, Biointerfaces 2005, 40, 107-13.
Peighambardoust, S. H.; Golshan Tafti, A.; Hesari, J., Application of spray drying for preservation of lactic acid starter cultures: a review. Trends in Food Science & Technology 2011, 22, 215-224.
Qian, E. T. K. a. H., Replacement of inorganic phosphorus by microbial phytase for young pigs fed on a maiz–soyabean-meal diet. British Journal of Nutrition 1996, 76, 563-578.
Raatz, S. K.; Redmon, J. B.; Wimmergren, N.; Donadio, J. V.; Bibus, D. M., Enhanced absorption of n-3 fatty acids from emulsified compared with encapsulated fish oil. Journal of the American Dietetic Association 2009, 109, 1076-81.
Ralf Greiner; Edith Haller, U. K., and Klaus-Dieter Jany, Purification and Characterization of a Phytase from Klebsiella terrigena. 1997.
Richard T. Lovell, e. a., Nutrient Requirements of Fish. National Academy Press Washington, D.C. 1993.
Richardson, J. J.; Teng, D.; Bjornmalm, M.; Gunawan, S. T.; Guo, J.; Cui, J.; Franks, G. V.; Caruso, F., Fluidized bed layer-by-layer microcapsule formation. Langmuir 2014, 30, 10028-34.
Robert, P.; Gorena, T.; Romero, N.; Sepulveda, E.; Chavez, J.; Saenz, C., Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International Journal of Food Science & Technology 2010, 45, 1386-1394.
S. H. Sugiura, J. G., F. M. Dong andR W. Hardy, Dietary microbial phytase supplementation and the utilization of phosphorus, trace minerals and protein by rainbow trout [Oncorhynchus mykiss (Walbaum)] fed soybean meal-based diets. Aquaculture Research 2001, 32, 583-592.
Saenz, C.; Tapia, S.; Chavez, J.; Robert, P., Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chemistry 2009, 114, 616-622.
Samueal B. Leslie; Eitan Israeli; Bruce Lighthart; John H. Crowe; Crowe, L. M., Trehalose and Sucrose Protect Both Membranes and Proteins in Intact Bacteria during Drying. Applied and Environmental Microbiology 1995, 61, 3592-3597.
Serfert, Y.; Schroder, J.; Mescher, A.; Laackmann, J.; Shaikh, M. Q.; Ratzke, K.; Gaukel, V.; Schuchmann, H. P.; Walzel, P.; Moritz, H. U.; Drusch, S.; Schwarz, K., Characterization of the spray drying behaviour of emulsions containing oil droplets with a structured interface. Journal of microencapsulation 2013, 30, 325-34.
Shiga, H.; Joreau, H.; Neoh, T. L.; Furuta, T.; Yoshii, H., Encapsulation of alcohol dehydrogenase in mannitol by spray drying. Pharmaceutics 2014, 6, 185-94.
Slominski, B. A., Davie T. Nyachoti, M.C. , Jones, O., Heat stability of endogenous and microbial phytase during feed pelleting. 2007.
Stark, C. R., Feed processing to maximize feed efficiency. 2012; p 131-151.
Steenwijk, J.; Langerock, R.; van Es, D. S.; van Haveren, J.; Geus, J. W.; Jenneskens, L. W., Long-term heat stabilisation by (natural) polyols in heavy metal- and zinc-free poly(vinyl chloride). Polymer Degradation and Stability 2006, 91, 52-59.
Subtil, S. F.; Rocha-Selmi, G. A.; Thomazini, M.; Trindade, M. A.; Netto, F. M.; Favaro-Trindade, C. S., Effect of spray drying on the sensory and physical properties of hydrolysed casein using gum arabic as the carrier. Journal of food science and technology 2014, 51, 2014-21.
T. Storebakken, K. D. S., A.J. Roem, Availability of protein, phosphorus and other elements in fish meal, soy-protein concentrate and phytase-treated soy-protein-concentrate-based diets to Atlantic salmon, Salmo salar. Aquaculture 1998, 161, 365-379.
Tang, C.-H.; Li, X.-R., Microencapsulation properties of soy protein isolate and storage stability of the correspondingly spray-dried emulsions. Food Research International 2013, 52, 419-428.
Torres-Giner, S.; Martinez-Abad, A.; Ocio, M. J.; Lagaron, J. M., Stabilization of a nutraceutical omega-3 fatty acid by encapsulation in ultrathin electrosprayed zein prolamine. J Food Sci 2010, 75, N69-79.
Wang, W.; Nema, S.; Teagarden, D., Protein aggregation--pathways and influencing factors. International journal of pharmaceutics 2010, 390, 89-99.
Weiss, J.; Takhistov, P.; McClements, D. J., Functional Materials in Food Nanotechnology. Journal of Food Science 2006, 71, R107-R116.
Wen-Chian Lian; Hung-Chi Hsiao; Chou, C.-C., Survival of bifidobacteria after spray-drying. International Journal of Food Microbiology 2002, 74, 79-86.
Yeting Liu ; Bhesh Bhandari; Zhou, W., Glass Transition and Enthalpy Relaxation of Amorphous Food Saccharides:  A Review. J. Agric. Food Chem. 2006, 54, 5701-5717.
Yoshii, H.; Buche, F.; Takeuchi, N.; Terrol, C.; Ohgawara, M.; Furuta, T., Effects of protein on retention of ADH enzyme activity encapsulated in trehalose matrices by spray drying. Journal of Food Engineering 2008, 87, 34-39.
Zhao, X.; Zhu, H.; Chen, J., Effects of sodium bis(2-ethylhexyl) sulfo succinate (AOT) reverse micelles on physicochemical properties of soy protein. Food and Bioproducts Processing 2015, 94, 500-506.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top