跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張力文
研究生(外文):Li-Wen Chang
論文名稱:介質研磨纖維素經不同條件噴霧乾燥的形貌及包覆效用
論文名稱(外文):Process conditions on the morphology and encapsulation capacity of spray-dried media-milled cellulose powder
指導教授:葉安義葉安義引用關係
指導教授(外文):An-I Yeh
口試委員:張永和陳時欣
口試委員(外文):Yung-Ho ChangShih-Hsin Chen
口試日期:2015-07-02
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:78
中文關鍵詞:纖維素噴霧乾燥形貌包覆
外文關鍵詞:cellulosespray dryingmorphologyencapsulation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
粒子的形態是粉末技術的重點,因為改變粒子型態,會改變產品的理化性質。噴霧乾燥技術是能夠有效控制顆粒型態的方法之一,可以透過調控參數,如入料濃度、進料口溫度、氣體流量 (gas flow rate) 等,影響粒子的形貌。本實驗探討濕式研磨纖維素入料濃度 (1% (w/w) 、3% (w/w) 及5% (w/w) ),與不同的入料口溫度 (100℃、115℃、130℃及200℃)進行噴霧乾燥,分析噴霧乾燥粉末的物理性質及觀察表面形態,並進行β-胡蘿蔔素的包覆實驗,評估介質研磨纖維素做為載體的潛力。結果顯示,隨著入料濃度提高,纖維素粉末粒徑提高,當濃度為5% (w/w)時,粉末的粒徑約是1% (w/w) 粉末的兩倍。在SEM下, 1% (w/w)的纖維素粉末較不規則,5% (w/w) 則近似球形;隨著溫度提高,5%的纖維素顆粒也越接近球形,此結果可能與蒸發速率相關。蒸發速率影響了粒子的型態,而入料口溫度提高與入料濃度越高,蒸發速率也越快,造成粒子型態的差異。當入料濃度為5% (w/w) 時,孔隙率最低,為55% - 56%,可能與粉末的開孔體積較少有關。包覆率方面,1% (w/w) 的研磨後噴乾纖維素,包覆率介於12-19%;5% (w/w)研磨噴乾纖維素包覆率則約在36 – 45%之間。而5% (w/w) 研磨纖維素在進料口溫度為100℃、115℃、130℃及200℃的包覆率分別為35.56、40.05、45.13及38.97%,因此研磨後纖維素在130℃的入料口溫度及5% (w/w) 入料濃度條件下進行噴霧乾燥,有較佳的β-胡蘿蔔素包覆效果。

In powder technology, control of particle morphology has received a lot of attention. The change of shapes has caused unprecedented chemical and physical properties that differ markedly from those of raw material. Spray dried technique is suggested to be a prospective way to produce various morphologies. Changing parameters of spray dryer is one of the strategy to control the morphology, including inlet temperature, solid concentration, gas flow rate, and so on. In this experiment, 3 different concentration (1% (w/w), 3% (w/w) and 5% (w/w)) of media milled cellulose and 4 different temperature (100℃, 115℃, 130℃ and 200℃) are chosen to spray dry. Physical properties and morphology of the cellulose spray dried powder would be analyzed. It shows that higher feed concentration produces larger spray dried particles. The particle size of 5% (w/w) feed concentration is two times as big as 1%(w/w). According to scanning electron micrograph, the spray dried cellulose powder at high concentration and high inlet temperature seems to form more spherical particle. It may relate to the evaporation rate, which affects the powder morphology, during drying. Higher inlet temperature and higher feed concentration result in faster evaporation, which leads to morphology variance. Also, the porosity of 5% feed concentration is the lowest, which infers to less open pore volume of the powder. Then, to assess the potential of media cellulose as a carrier, β-carotene is added into, according to the spray dried conditions mentioned above. It indicates that at 1% (w/w) feed concentration, the loading capacity is around 12-19%, while 5% (w/w) feed concentration is around 36-45%. The result implies that the particles at 130℃ inlet temperature and 5% (w/w) feed concentration show the highest loading capacity.

誌謝 i
摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 viii
壹、前言 1
貳、文獻回顧 2
2.1 纖維素 2
2.1.1 纖維素的基本性質 2
2.1.2 纖維素之生理功效 3
2.1.3 奈米纖維素與其應用 4
2.2 β-胡蘿蔔素 5
2.2.1 β-胡蘿蔔素之基本結構與性質 6
2.2.2 β-胡蘿蔔素之生理功效 7
2.3 奈米科技 8
2.3.1 奈米材料的製備 8
2.3.2 介質研磨技術 10
2.4 食品中的包覆技術 12
2.4.1 脂溶性生物必要物質添加於食物的限制 13
2.5 噴霧乾燥 15
2.5.1 噴霧乾燥時粒子的形成 17
2.5.2 噴乾參數與噴乾粒子型態 19
2.5.3 包覆系統常見的問題 20
2.6 多孔固體 (porous solid) 介紹 22
參、材料與方法 24
3.1 材料 24
3.2 儀器設備 24
3.3 實驗流程及方法 28
3.3.1 纖維素懸浮液製備 28
3.3.2 介質研磨 28
3.3.3 β-胡蘿蔔素的添加量 29
3.3.4 噴霧乾燥 29
3.3.5 水分含量測定 30
3.3.6 回收率測定 31
3.3.7 粒徑量測 31
3.3.8 密度量測與孔隙率 (porosity) 計算 32
3.3.9 黏度量測 33
3.3.10 比表面積測定 33
3.3.11 包覆率測定 34
肆、實驗架構 35
伍、結果與討論 36
5.1 粒徑分析 36
5.2 粉末回收率與水分含量 40
5.3 表面型態觀察 41
5.4 粉體密度量測 47
5.5 粉末的比表面積 49
5.6 粉末內部結構觀察 51
5.7 裝載率與包覆率測定 53
陸、結論 56
柒、參考文獻 58
捌、附錄一 66
玖、附錄二 68


吳佩璇。介質研磨對纖維素表面性質與巨量礦物元素結合力之影響。國立台灣大學食品科技研究所碩士論文:台北市,2010。
陳時欣。蔗糖酯對奈米/次微米纖維素懸浮液穩定性之研究。國立台灣大學食品科技所碩士論文:台北市,2006。
高絹智。多孔性纖維素之製備及其特性。國立台灣大學食品科技研究所碩士論文:台北市,2013。
駱威達。卵磷脂與麥芽糊精對奈米/次微米纖維素懸浮液穩定性及其凍乾粉末覆水性之研究。國立台灣大學食品科技所碩士論文:台北市,2009。
羅少君。介質研磨纖維素經噴霧乾燥後的形貌及包覆。國立台灣大學食品科技研究所碩士論文:台北市,2015。
Ajasa, A. A.; Adenowo, A. A.; Ogunlewwe, A. O.; Folorunso, C. O. Thermal conductivity of food products using: A correlation analysis based on artificial neural networks (ANNs). Advances in Bioscience and Bioengineering. 2014, 2, 14-24.
Anderson,J. W.; Baird,P.; Davis Jr, R. H.; Ferreri,S.; Knudtson, M.; Koraym,A.; Waters,V. Williams, C. L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188-205.
Anstey, A. V. Systemic photoprotection with α-tocopherol (vitamin E) and -carotene. Clin. Exp. Dermatol. 2002, 27, 170–176.
Bendich, A. β-carotene and the immune response. Proc. Nutr. Soc. 1991, 50, 263-274.
Bilancetti, L.; Poncelet, D.; Loisel, C.; Mazzitelli, S.; Nastruzzi, C. A statistical approach to optimize the spray drying of starch particles: application to dry powder coating. AAPS Pharm. Sci. Tech. 2010, 11, 1257-1267.
Boon, C. S.; McClements, D. J.; Weiss, J.; Decker, E. A. Factors influencing the chemical stability of carotenoids in foods. Crit. Rev. Food Sci. Nutr. 2010, 50, 515-32.
Bruinsma, P. J.; Kim, A. Y.; Liu, J.; Baskaran, S. Mesoporous silica synthesized by solvent evaporation: Spun fibers and spray-dried hollow spheres. Chem. Mater. 1997, 9, 2507-2512.
Cassia, R. L. C.; Paulo, R. N. C.; Carol, H. Collins high performance liquid chromatographic determination of the geometrical isomers of -carotene in several food stuffs. J. Chromatogr. A. 1995, 697, 289-294.
Combs, G. F. The Vitamins: fundamental aspects in nutrition and health, 3rd ed. Ithaca: Elsevier Academic Press, 2008.
Cutting, S. M. Bacillus probiotics. Food Microbio. 2011, 28, 214–220.
Desai, K. G. H.; Park, H. J. Recent developments in microencapsulation of food ingredients. Drying Technol. 2005, 23, 1361-1394.
Díez, I.; Eronen, P.; Österberg, M.; Linder, M. B.; Ikkala, O.; Ras, R. H. Functionalization of nanofibrillated cellulose with silver nanoclusters: Fluorescence and antibacterial activity. Macromol. Biosci. 2011, 11, 1185-1191.
Dolinsky, A. A. High-Temperature Spray Drying. Drying Technol. 2001, 19, 785-806.
Ekadawi-Sever, N.; de Pablo, J. J.; Feick, E.; von Meerwall, E. Diffusion of sucrose and α, α-Trehalose in aqueous solutions. J. Phys. Chem. A 2003, 107, 936-943.
Elverson, J.; Millqvist-Fureby, A.; Alderborn, G.; Elofsson, U. Droplet and particle size relationship and shell thickness of inhalable lactose particles during spray drying. J. Pharm. Sci. 2003, 92, 900-910.
Fogler, B. B.; Kleinschmidt, R. V. Spray drying. Ind. Eng. Chem. 1938, 30, 1372-1384.
Garti, N.; McClements, D. J. Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals. Woodhead Publishing: Cambridge, 2012.
Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 2007, 40, 1107-1121.
Habibi, Y.; Lucia, L. A.; Rojas, O. J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 2010, 110, 3479-3500.
He, M.; Wang, Y.; Forssberg, E. Parameter effects on wet ultrafine grinding of limestone through slurry rheology in a stirred media mill. Powder Technol. 2006, 161, 10-21.
Hu, E. L.; Shaw, D. T. Synthesis and assembly. In Nanostructure Science and Technology, Lockwood, D.L. edited. Springer Inc.: New York, USA, 1999, 16.
Jafari, S. M.; Assadpoor, E.; He, Y.; Bhandari, B. Encapsulation efficiency of food flavours and oils during spray drying. Drying Technol. 2008, 26, 816-835.
Jeyanthi, R.; Thanoo, B. C.; Metha, R. C.; DeLuca, P. P. Effect of solvent removal technique on the matrix characteristics of polylactide/glycolide microspheres for peptide delivery. J. Controlled Release. 1996, 38, 235-244.
Jiang, G.; Thanoo, B. C.; DeLuca, P. P. Effect of osmotic pressuren in the solvent extraction phase on BSA release profile from PLGA microspheres. Pharm. Dev. Technol. 2002, 7, 391-399.
Karppi, J.; Laukkanen, J. A.; Makikallio, T. H.; Ronkainen, K.; Kurl, S. Low beta-carotene concentrations increase the risk of cardiovascular disease mortality among Finnish men with risk factors. Nutr. Metab. Carbiovasc. Dis. 2012, 22, 921-928.
Kolakovic, R.; Peltonen, L.; Laukkanen, A.; Hirvonen, J.; Laaksonen, T. Nanofibrillar cellulose films for controlled drug delivery. Eur. J. Pharm. Biopharm. 2012, 82, 308-315.
Kotake, N.; Daibo, K.; Yamamoto, T.; Kanda, Y. Experimental investigation on a grinding rate constant of solid materials by a ball mill—effect of ball diameter and feed size. Powder Technol. 2004, 143-144, 196-203.
Lakkis, J. M. Introduction in Encapsulation and Controlled Release Technologies in Food Systems. Blackwell Publishing: Iowa, 2007.
Leong, K. H. Morphological control of particles generated from the evaporation of solution droplets: experiment. J. Aerosol Sci. 1987, 18, 525-552.
Leung, I.; Tso, M.; Li, W.; Lam, T. Absorption and tissue distribution of zeaxanthin and lutein in rhesus monkeys after taking Fructus lycii (Gou Qi Zi) extract. Invest. Ophthalmol. Vis. Sci. 2001, 42, 466–471.
Lijn, J. van der. Simulation of Heat and Mass Transfer in Spray Drying. Center for Agricultural Publishing and Documentation: Wageningen, 1976.
Loksuwan, J. Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocoll. 2006, 21, 928-935.
Maa, Y.; Nguyen, P.; Andya, J. D.; Dasovich, N.; Sweeney, T. D.; Shire, S. J.; Hsu, C. C. Effect of spray drying and subsequent processing conditions on residual moisture content and physical/biochemical stability of protein inhalation powders. Pharm. Res. 1998, 15, 768-775.
Malafronte, L.; Ahrné, L.; Schuster, E.; Innings, F.; Rasmuson, A. Exploring drying kinetics and morphology of commercial dairy powders. J. Food Eng. 2015, 158, 58-65.
Masters, K. Spray Drying Handbook, 5th ed. John Wiley & Sons Inc.: New York, 1991.
McClements, D. J. Crystals and crystallization in oil-in-water emulsions: implications for emulsion-based delivery systems. Adv. Colloid Interface Sci. 2012, 174, 1-30.
McClements, D. J. Nanoscale Nutrient Delivery Systems for Food Applications: Improving Bioactive Dispersibility, Stability, and Bioavailability. J. Food Sci. 2015.
Merisko-Liversidge, E.; Liversidge, G. G.; Cooper, E. R. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci. 2003, 18, 113-120.
Miller, P. E.; Snyder, D. C. Phytochemicals and cancer risk: a review of the epidemiological evidence. Nutr. Clin. Pract. 2012, 27, 599-612.
Moehammad, A. W.; Purwiyatno, H. Technical aspects of food fortification. Food Nutr. Bull. 1998, 19, 101-108.
Nandiyanto, A. B. D.; Okuyama, K. Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Adv. Powder Technol. 2011, 22, 1-19.
Nathalie, L.; Isabelle, D.; Alain, D.; Julien, Bras. Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review. Carbohydr. Polym. 2012, 90, 735-764.
Omenn, G. S.; Goodman, G. E.; Thornquist, M. D.; Balmes, J.; Cullen. M. R.; Glass, A. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovasculardisease.N. Engl. J. Med. 1996, 334, 1150-1155.
Orset, S.; Leach, G. C.; Morais, R. Spray-drying of the microalga Dunaliella salina: effects on β-carotene content and isomer composition. J. Agr. Food Chem. 1999, 47, 4782-4790.
Peng, Y.; Gardner, D. J.; Han, Y. Drying cellulose nanofibrils: in search of a suitable method. Cellulose 2011, 19, 91-102.
Pistel, K.-F.; Kissel, T. Effects of salt addition on the microencapsulation of proteins using W/O/W double emulsion technique. J. Microencapsulation 2000, 17, 467-483.
Quek, S. Y.; Chok, N. K.; Swedlund, P. The physicochemical properties of spray-dried watermelon powders. Chem. Eng. Proc. Proc. Intensif. 2007, 46, 386-392.
Ré, M.-I. Formulating Drug Delivery Systems by Spray Drying. Drying Technol. 2006, 24, 433-446.
Rouquerol, J.; Avnir, D.; Fairbridge, C. W.; Everett, D. H.; Haynes, J. H.; Pernicone, N.; Ramsay, J. D. F.; Sing, K. S. W.; Unger, K. K. Recommendations for the characterization of porous solids. Pure Appl. Chem. 1994, 66, 1739-1758.
Saavedra, J.M.; Tschernia, A. Human studies with probiotics and prebiotics: Clinical implications. Br. J. Nutr. 2002, 87, 241–246.
Schieber, A.; Carle, R. Occurrence of carotenoid cis-isomers in food: Technological, analytical and nutritional implications. Trends Food Sci. Tech.2005. 16, 416-422.
Sen, D.; Mazumder, S.; Melo, J. S.; Khan, A.; Bhattyacharya, S.; D''Souza, S. F. Evaporation driven self-assembly of a colloidal dispersion during spray drying: volume fraction dependent morphological transition. Langmuir : the ACS Journal of Surfaces and Colloids 2009, 25, 6690-5.
Singh, R. P.; Heldman, D. R. Introduction to Food Engineering. Gulf Professional Publishing: San Diego, 2001.
Slavin, J. L. Dietary fiber and body weight. Nutrients 2005, 21, 411-418.
Slavin, J.L. Position of the American Dietetic Association: Health implications of dietary fiber. J. Am. Diet. Assoc. 2008, 108, 1716–1731.
Slavin, J. L. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 2013, 5, 1417-1435.
Stratton, S. P.; Liebler, D. C. Determination of singlet oxygenspecific versus radical-mediated lipid peroxidation in photosensitized oxidation of lipid bilayers: effect of beta carotene and alpha-tocopherol. Biochemistry 1997, 36, 12911-12920.
Tucker, L. A.; Thomas, K. S. Increasing total fiber intake reduces risk of weight and fat gains in women. J. Nutr. 2009, 139, 576–581.
Uetani, K.; Yano, H. Self-organizing capacity of nanocelluloses via droplet evaporation. Soft Matter 2013, 9, 3396-3401.
van Poppel, G. Epidemiological evidence for β-carotene in prevention of cancer and cardiovascular disease. Eur. J. Clin. Nutr. 1996, 50, 57-61.
Vehring, R. Pharmaceutical particle engineering via spray drying. Pharm. Res. 2008, 25, 999-1022.
Vehring, R.; Foss, W. R.; Lechuga-Ballesteros, D. Particle formation in spray drying. J. Aerosol Sci. 2007, 38, 728-746.
Walton, D. E.; Mumford, C. J. The Morphology of spray-dried particles. Chem. Eng. Res. Des. 1999, 77, 442-460.
Weber, D.; Grune, T. The contribution of beta-carotene to vitamin A supply of humans. Mol. Nutr. Food Res. 2012, 56, 251–258.
Yang, Y.; Chia, H.; Chung, T. Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated by double-emulsion solvent extraction /evaporation method. J. Control Release 2000, 69, 81-96.
Yeo, Y.; Park, K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch. Pharm. Res. 2004, 27, 1-12.
Yonekura, L.; Nagao, A. Intestinal absorption of dietary carotenoids. Mol. Nutr. Food Res. 2007, 51, 107-115.
Zhang, J.; Zografi, G. Water vapor absorption into amorphous sucrose-poly(vinyl pyrrolidone) and trehalose-poly(vinyl pyrrolidone) mixtures. J. Pharm. Sci. 2001, 90, 1375-1385.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top