跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 16:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊宜蓁
研究生(外文):Yi-Chen Yang
論文名稱:啤酒花萃取物對人體皮膚細胞抗光老化之評估
論文名稱(外文):Evaluation of anti-photoaging activity of hops extract on human skin cells
指導教授:游若篍
指導教授(外文):Roch-Chui Yu
口試委員:周正俊林俊杰鄭光成顏聰榮
口試日期:2015-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:97
中文關鍵詞:啤酒花萃取物皮膚光老化基質金屬蛋白酶膠原蛋白酪胺酸酶
外文關鍵詞:hops extractskin photoagingmatrix metalloproteinasescollagentyrosinase
相關次數:
  • 被引用被引用:3
  • 點閱點閱:889
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
皮膚老化可分為自然老化與光老化,由紫外光所導致的光老化,對皮膚所造成的影響更為顯著,包含皺紋生成、乾澀、鬆弛、黑色素沈澱,甚至導致皮膚癌。UVA 能穿透至真皮層,刺激細胞產生大量ROS,同時抑制膠原蛋白生成與促進基質金屬蛋白酶 (Matrix metalloproteinases, MMPs) 的活性,進而加速胞外基質 (Extracellular matrix, ECM) 降解,最終使皮膚失去彈性與保水力;高能量的UVB造成的損害尤其嚴重,除了使角質細胞受損、加速黑色素生成之外,可能還會造成DNA或蛋白質等分子的損害,甚至引發癌變。先前研究證實啤酒花具有良好抗菌、抗發炎、抗氧化、抗癌等功效,此外啤酒花酸與黃腐醇在體外試驗中皆有效抑制MMP-1、MMP-8活性,細胞模式中亦指出黃腐醇能刺激纖維母細胞生成彈性蛋白與第一型膠原蛋白,並抑制黑色素生成。本研究以UVA、UVB分別誘導人類皮膚纖維母細胞CCD-966SK與角質細胞HaCaT造成急性光損傷,評估預處理或共處理啤酒花水萃物 (HWE) 及乙醇萃取物 (HEE) 對皮膚抗光老化之功效。結果顯示,在抑制酪胺酸酶試驗中,HWE與HEE抑制效果非常有限,此外HEE具有潛在光毒性質;HWE在UV誘導模式下,可顯著提升細胞存活率,在共處理條件下可同時降低CCD-966SK與HaCaT細胞內ROS含量,並抑制MMP-1分泌量;此外100g/mL HWE可促進CCD-966SK膠原蛋白生成;在高劑量UVB誘導模式下,預處理或共處理HWE,皆可減緩HaCaT細胞的DNA損傷,顯示HWE具有抗光老化之功效,兼具安全性與功效性,適合開發為保養品成分。

Skin aging can be divided into natural aging and photoaging, influenced by several factors. UV is considered one of the most important causes of skin photoaging, including wrinkling and hyperpigmentation. Wrinkle formation is relevant to degradation of extracellular matrix (ECM), especially collagen, the major materials that provides structural to the skin. UVA radiation promotes the generation of oxygen species (ROS) and synthesis of matrix metalloproteinases (MMPs) in dermal fibroblast. It was suggested that MMPs contribute to the breakdown of dermal interstitial collagen and other connective tissue components. Except direct damage in skin cells, UVB may accelerate melanogenesis and cause DNA or protein damage, and even lead to cancer. In previous studies, hops have attracted a great deal of attention as a source of small molecules such as humulone, lupulone and xanthohumol with potential for beneficial effects on anti-bacterial, anti-inflammatory, anti-oxidation and anti-cancer. Hops bitter acid and xanthohumol can inhibit MMP-1 and MMP-8 activity in vitro. Xanthohumol can stimulate elastin and type I collagen production in fibroblasts. The aim of this study was to evaluate pretreatment or co-treatment of HWE and HEE with UVA or UVB for skin anti-photoaging potential, UVA and UVB were respectively induced CCD-966SK and HaCaT cells, leading to acute light damage. The results showed that, the inhibition rate of HWE and HEE to mushroom tyrosinase were very limited. Thought HEE has higher antioxidant potential, it may be phototoxic. In UV-induced model, HWE can significantly enhance cell viability, while reducing the ROS production in CCD-966SK and HaCaT cells. Moreover, HWE inhibited the secretion of MMP-1, and we found that 100 μg/mL HWE can increase collagen production in CCD-966SK cells. At high doses of UVB irradiation, both treatments can suppress DNA damage, showing that HWE has anti-photoaging effect. In conclusion, these results show that HWE is more suitable than HEE for skin care products ingredients.

口試委員會審定書………………………………………………………………………………………………………………………………#
致謝……………………………………………………………………………………………………………………………………………………………i
中文摘要………………………………………………………………………………………………………………………………………………ii
英文摘要……………………………………………………………………………………………………………………………………………iii
目錄…………………………………………………………………………………………………………………………………………………………iv
圖次………………………………………………………………………………………………………………………………………………………vii
表次……………………………………………………………………………………………………………………………………………………viii
壹、引言…………………………………………………………………………………………………………………………………………………1
貳、文獻回顧………………………………………………………………………………………………………………………………………2
一、人類皮膚………………………………………………………………………………………………………………………………………2
(一) 人類皮膚的結構組成與功能………………………………………………………………………………………………2
(二) 皮膚老化……………………………………………………………………………………………………………………………………5
(三) 皮膚自然老化機制…………………………………………………………………………………………………………………5
(四) 紫外光與皮膚光老化機制…………………………………………………………………………………………………7
(五) 紫外光與黑色素生成機制………………………………………………………………………………………………13
二、啤酒花…………………………………………………………………………………………………………………………………………16
(一) 啤酒花簡介……………………………………………………………………………………………………………………………16
(二) 啤酒花成分……………………………………………………………………………………………………………………………16
(三) 啤酒花的生理活性………………………………………………………………………………………………………………16
(四) 啤酒花與皮膚保健相關之活性成分……………………………………………………………………………17
參、實驗目的與架構………………………………………………………………………………………………………………………20
一、實驗目的……………………………………………………………………………………………………………………………………20
二、實驗架構……………………………………………………………………………………………………………………………………21
肆、材料與方法………………………………………………………………………………………………………………………………23
一、實驗材料……………………………………………………………………………………………………………………………………23
(ㄧ) 實驗原料…………………………………………………………………………………………………………………………………23
(二) 實驗細胞株……………………………………………………………………………………………………………………………23
(三) 細胞用培養基………………………………………………………………………………………………………………………24
(三) 實驗藥品與試劑……………………………………………………………………………………………………………………24
(四) 實驗儀器與設備……………………………………………………………………………………………………………………25
二、實驗方法……………………………………………………………………………………………………………………………………26
(ㄧ) 啤酒花萃取……………………………………………………………………………………………………………………………26
(二) 成份分析…………………………………………………………………………………………………………………………………26
(三) 抗氧化能力測定……………………………………………………………………………………………………………………27
(四) 抑制蘑菇酪胺酸酶活性測定……………………………………………………………………………………………29
(五) 細胞試驗…………………………………………………………………………………………………………………………………30
(六) 統計分析…………………………………………………………………………………………………………………………………40
伍、結果與討論………………………………………………………………………………………………………………………………41
一、啤酒花萃取物成分分析………………………………………………………………………………………………………41
(一) 啤酒花萃取率………………………………………………………………………………………………………………………41
(二) 總酚含量測定………………………………………………………………………………………………………………………42
(三) 總類黃酮含量測定………………………………………………………………………………………………………………42
二、抗氧化能力測定………………………………………………………………………………………………………………………44
(一) 清除DPPH自由基能力測定………………………………………………………………………………………………44
(二) ORAC值………………………………………………………………………………………………………………………………………44
三、美白試驗……………………………………………………………………………………………………………………………………47
(一) 抑制蘑菇酪胺酸酶活性試驗……………………………………………………………………………………………47
(二) 啤酒花萃取物對小鼠黑色素瘤細胞存活率之影響………………………………………………49
(三) 啤酒花萃取物對細胞內黑色素生成之影響………………………………………………………………49
(四) 啤酒花萃取物對細胞內酪胺酸酶活性之影響…………………………………………………………49
四、抗老化功效評估………………………………………………………………………………………………………………………54
(ㄧ) 啤酒花萃取物對纖維母細胞與角質細胞之毒性試驗…………………………………………54
(二) 啤酒花萃取物對纖維母細胞與角質細胞內ROS生成之影響………………………………57
(三) 啤酒花萃取物對UVA誘導纖維母細胞存活率與ROS含量之影響………………………60
(四) 啤酒花萃取物對UVB誘導角質細胞存活率與ROS之影響……………………………………65
(五) 啤酒花萃取物對纖維母細胞第一型膠原蛋白生成之影響…………………………………68
(六) 啤酒花水萃物對UV誘導皮膚細胞MMP-1分泌量之影響………………………………………70
(七) 啤酒花水萃物對高劑量UVB誘導角質細胞DNA損傷之影響………………………………74
陸、結論………………………………………………………………………………………………………………………………………………79
柒、參考文獻……………………………………………………………………………………………………………………………………80
捌、附錄………………………………………………………………………………………………………………………………………………94
一、最適UV強度試驗………………………………………………………………………………………………………………………94
二、啤酒花萃取物之全波長吸收光譜……………………………………………………………………………………94


胡文姝。2003。啤酒花與啤酒花化學。國立中正大學化學研究所碩士論文。
陳建男。2007。啤酒花抗氧化成分之研究。大同大學生物工程研究所碩士論文。
陳彥伶。2013。桑椹花青素粗萃物對人類皮膚纖維母細胞光老化之保護。國立臺灣大學食品科技研究所碩士論文。
歐陽璇。2012。以釀酒酵母及米麴菌發酵仙鶴草仙鶴草生產具皮膚保健功效之產物。國立臺灣大學食品科技研究所碩士論文。
姜櫳宣。2013。奈米/次微米山藥對人類皮膚細胞膠原蛋白生合成與雌激素活性
表現之影響。國立臺灣大學食品科技研究所博士論文。
Aitken, G.R., Henderson, J.R., Chang, S.C., McNeil, C.J., and Birch-Machin, M.A. Direct monitoring of UV-induced free radical generation in HaCaT keratinocytes. Clin. Expe.Dermatol. 2007, 32, 722-727.
Almine, J.F., Bax, D.V., Mithieux, S.M., Nivison-Smith, L., Rnjak, J., Waterhouse, A., Wise, S.G., and Weiss, A.S. Elastin-based materials. Chem. Soc. Rev. 2010, 39, 3371-3379.
Arung, E.T., Furuta, S., Ishikawa, H., Kusuma, I.W., Shimizu, K., and Kondo, R. Anti-melanogenesis properties of quercetin- and its derivative-rich extract from Allium cepa. Food. Chem. 2011, 124, 1024-1028.
Avila Acevedo, J.G., Espinosa Gonzalez, A.M., De Maria y Campos, D.M., Benitez Flores Jdel, C., Hernandez Delgado, T., Flores Maya, S., Campos Contreras, J., Munoz Lopez, J.L., and Garcia Bores, A.M. Photoprotection of Buddleja cordata extract against UVB-induced skin damage in SKH-1 hairless mice. BMC Complement. Alt. Med. 2014, 14, 281.
Baroni, A., Buommino, E., De Gregorio, V., Ruocco, E., Ruocco, V., and Wolf, R. Structure and function of the epidermis related to barrier properties. Clin. Dermatol. 2012, 30, 257-262.
Breitkreutz, D., Mirancea, N., and Nischt, R. Basement membranes in skin: unique matrix structures with diverse functions? Histochem. Cell. Biol. 2009, 132, 1-10.
Brennan, M., Bhatti, H., Nerusu, K.C., Bhagavathula, N., Kang, S., Fisher, G.J., Varani, J., and Voorhees, J.J. Matrix metalloproteinase-1 is the major collagenolytic enzyme responsible for collagen damage in UV-irradiated human skin. Photochem. Photobiol. 2003, 78, 43-48.
Caddeo, C., Teskac, K., Sinico, C., and Kristl, J. Effect of resveratrol incorporated in liposomes on proliferation and UV-B protection of cells. Int. J. Pharm. 2008, 363, 183-191.
Casagrande, R., Georgetti, S.R., Verri, W.A., Jr., Dorta, D.J., dos Santos, A.C., and Fonseca, M.J. Protective effect of topical formulations containing quercetin against UVB-induced oxidative stress in hairless mice. J. Photochem. Photobiol. B. 2006, 84, 21-27.
Cha, J.W., Piao, M.J., Kim, K.C., Yao, C.W., Zheng, J., Kim, S.M., Hyun, C.L., Ahn, Y.S., and Hyun, J.W. The Polyphenol Chlorogenic Acid Attenuates UVB-mediated Oxidative Stress in Human HaCaT Keratinocytes. Biomol. Ther. 2014, 22, 136-142.
Chakraborty, A.K., Funasaka, Y., Komoto, M., and Ichihashi, M. Effect of arbutin on melanogenic proteins in human melanocytes. Pigm. Cell. Res. 1998, 11, 206-212.
Chang, T.S. An Updated Review of Tyrosinase Inhibitors. Int. J. Mol. Sci. 2009, 10, 2440-2475.
Chen, W., Becker, T., Qian, F., and Ring, J. Beer and beer compounds: physiological effects on skin health. J. Eur. Acad. Dermatol. Venereol. 2013, 142-50.
Condorelli, G., De Guidi, G., Giuffrida, S., Sortino, S., Chillemi, R., and Sciuto, S. Molecular mechanisms of photosensitization induced by drugs. XII. Photochemistry and photosensitization of rufloxacin: an unusual photodegradation path for the antibacterials containing a fluoroquinolone-like chromophore. Photochem. Photobiol. 1999, 70, 280-286.
Cumberbatch, M., Dearman, R.J., Griffiths, C.E., and Kimber, I. Epidermal Langerhans cell migration and sensitisation to chemical allergens. APMIS. 2003, 111, 797-804.
Davalos, A., Gomez-Cordoves, C., and Bartolome, B. Extending applicability of the oxygen radical absorbance capacity (ORAC-fluorescein) assay. J. Agric. Food. Chem. 2004, 52, 48-54.
Dhumrongvaraporn, A., and Chanvorachote, P. Kinetics of ultraviolet B irradiation-mediated reactive oxygen species generation in human keratinocytes. J. Cosmet. Sci. 2013, 64, 207-217.
Elliott, A.J., Scheiber, S.A., Thomas, C., and Pardini, R.S. Inhibition of glutathione reductase by flavonoids. A structure-activity study. Biochem. Pharmacol. 1992, 44, 1603-1608.
Epstein, J.H. Phototoxicity and photoallergy in man. J. Am. Acad. Dermatol. 1983, 8, 141-147.
Erden Inal, M., Kahraman, A., and Koken, T. Beneficial effects of quercetin on oxidative stress induced by ultraviolet A. Clin. Expe. Dermatol. 2001, 26, 536-539.
Eruslanov, E., and Kusmartsev, S. Identification of ROS using oxidized DCFDA and flow-cytometry. Methods. Mol. Biol. 2010, 594, 57-72.
Fagot, D., Asselineau, D., and Bernerd, F. Direct role of human dermal fibroblasts and indirect participation of epidermal keratinocytes in MMP-1 production after UV-B irradiation. Arch. Dermatol. Res. 2002, 293, 576-583.
Fagot, D., Asselineau, D., and Bernerd, F. Matrix metalloproteinase-1 production observed after solar-simulated radiation exposure is assumed by dermal fibroblasts but involves a paracrine activation through epidermal keratinocytes. Photochem. Photobiol. 2004, 79, 499-505.
Ferrali, M., Signorini, C., Caciotti, B., Sugherini, L., Ciccoli, L., Giachetti, D., and Comporti, M. Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity. FEBS Lett. 1997, 416, 123-129.
Fisher, G.J., Datta, S., Wang, Z., Li, X.Y., Quan, T., Chung, J.H., Kang, S., and Voorhees, J.J. c-Jun-dependent inhibition of cutaneous procollagen transcription following ultraviolet irradiation is reversed by all-trans retinoic acid. J. Clin. Invest. 2000, 106, 663-670.
Fisher, G.J., Kang, S., Varani, J., Bata-Csorgo, Z., Wan, Y., Datta, S., and Voorhees, J.J. Mechanisms of photoaging and chronological skin aging. Arch. Dermatol. 2002, 138, 1462-1470.
Fujii, T., and Saito, M. Inhibitory effect of quercetin isolated from rose hip (Rosa canina L.) against melanogenesis by mouse melanoma cells. Biosci. Biotechnol. Biochem. 2009, 73, 1989-1993.
Gelse, K., Poschl, E., and Aigner, T. Collagens--structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 2003, 55, 1531-1546.
Getränke-Fachverlag H.C. Hops and hop product. EBC. 1997, 98-107.
Gilchrest, B.A. A review of skin ageing and its medical therapy. Br. J. Dermatol. 1996, 135, 867-875.
Halliwell, B., and Whiteman, M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? B. J. Pharmacol. 2004, 142, 231-255.
Hanson, K.M., and Clegg, R.M. Observation and quantification of ultraviolet-induced reactive oxygen species in ex vivo human skin. Photochem. Photobiol. 2002, 76, 57-63.
Hearing, V.J., and Jimenez, M. Analysis of Mammalian Pigmentation at the Molecular-Level. Pigm. Cell. Res. 1989, 2, 75-85.
Honari, S. Topical therapies and antimicrobials in the management of burn wounds. Crit. Care. Nurs. Clin. North Am. 2004, 16, 1-11.
Imokawa, G., Yada, Y., and Miyagishi, M. Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes. J. Biol. Chem. 1992, 267, 24675-24680.
Julkunentiitto, R. Phenolic Constituents in the Leaves of Northern Willows - Methods for the Analysis of Certain Phenolics. J. Agri Food. Chem. 1985, 33, 213-217.
Kahari, V.M., and Saarialho-Kere, U. Matrix metalloproteinases in skin. Exp. Dermatol. 1997, 6, 199-213.
Kang, L.P., Qi, L.H., Zhang, J.P., Shi, N., Zhang, M., Wu, T.M., and Chen, J. Effect of genistein and quercetin on proliferation, collagen synthesis, and type I procollagen mRNA levels of rat hepatic stellate cells. Acta. Pharmacol. Sin. 2001, 22, 793-796.
Kim, C., Ryu, H.C., and Kim, J.H. Low-dose UVB irradiation stimulates matrix metalloproteinase-1 expression via a BLT2-linked pathway in HaCaT cells. Exp. Mol. Med. 2010, 42, 833-841.
Kim, H.H., Shin, C.M., Park, C.H., Kim, K.H., Cho, K.H., Eun, H.C., and Chung, J.H. Eicosapentaenoic acid inhibits UV-induced MMP-1 expression in human dermal fibroblasts. J. Lipid. Res. 2005, 46, 1712-1720.
Koo, J.H., Kim, H.T., Yoon, H.Y., Kwon, K.B., Choi, I.W., Jung, S.H., Kim, H.U., Park, B.H., and Park, J.W. Effect of xanthohumol on melanogenesis in B16 melanoma cells. Exp. Mol. Med. 2008, 40, 313-319.
Kosmadaki, M.G., and Gilchrest, B.A. The role of telomeres in skin aging/photoaging. Micron. 2004, 35, 155-159.
Lamy, V., Roussi, S., Chaabi, M., Gosse, F., Lobstein, A., and Raul, F. Lupulone, a hop bitter acid, activates different death pathways involving apoptotic TRAIL-receptors, in human colon tumor cells and in their derived metastatic cells. Apoptosis. 2008, 13, 1232-1242.
Likhitwitayawuid, K., and Sritularak, B. A new dimeric stilbene with tyrosinase inhibitiory activity from Artocarpus gomezianus. J. Nat. Prod. 2001, 64, 1457-1459.
McKleroy, W., Lee, T.H., and Atabai, K. Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2013, 304, L709-721.
Merker, K., Sitte, N., and Grune, T. Hydrogen peroxide-mediated protein oxidation in young and old human MRC-5 fibroblasts. Arch. Biochem Biophy. 2000, 375, 50-54.
Miyamae, Y., Yamamoto, M., Sasaki, Y.F., Kobayashi, H., Igarashi-Soga, M., Shimoi, K., and Hayashi, M. Evaluation of a tissue homogenization technique that isolates nuclei for the in vivo single cell gel electrophoresis (comet) assay: a collaborative study by five laboratories. Muta. Res. 1998, 418, 131-140.
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983, 65, 55-63.
Murad, S., Grove, D., Lindberg, K.A., Reynolds, G., Sivarajah, A., and Pinnell, S.R. Regulation of collagen synthesis by ascorbic acid. Natl. Acad. Sci. USA. 1981, 78, 2879-2882.
Nam, C., An, S., Lee, E., Moon, S., Kang, J., and Chang, I. An in vitro phototoxicity assay battery (photohaemolysis and 3T3 NRU PT test) to assess phototoxic potential of fragrances. Altern. Lab. Anim. 2004, 32 Suppl 1B, 693-697.
Narayanapillai, S., Agarwal, C., Tilley, C., and Agarwal, R. Silibinin is a potent sensitizer of UVA radiation-induced oxidative stress and apoptosis in human keratinocyte HaCaT cells. Photochem. Photobiol. 2012, 88, 1135-1140.
Naylor, E.C., Watson, R.E., and Sherratt, M.J. Molecular aspects of skin ageing. Maturitas. 2011, 69, 249-256.
Negrao, R., Costa, R., Duarte, D., Gomes, T.T., Coelho, P., Guimaraes, J.T., Guardao, L., Azevedo, I., and Soares, R. Xanthohumol-supplemented beer modulates angiogenesis and inflammation in a skin wound healing model. Involvement of local adipocytes. J. Cell. Biochem. 2012, 113, 100-109.
Nichols, J.A., and Katiyar, S.K. Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch. Dermatol. Res. 2010, 302, 71-83.
Nishida, H., Hirota, M., Seto, Y., Suzuki, G., Kato, M., Kitagaki, M., Sugiyama, M., Kouzuki, H., and Onoue, S. Non-animal photosafety screening for complex cosmetic ingredients with photochemical and photobiochemical assessment tools. Regul. Toxicol. Pharmacol. 2015, 72, 578-585.
Onder, F.C., Ay, M., and Sarker, S.D. Comparative study of antioxidant properties and total phenolic content of the extracts of Humulus lupulus L. and quantification of bioactive components by LC-MS/MS and GC-MS. J. Agric. Food. Chem. 2013, 61, 10498-10506.
Onoue, S., and Tsuda, Y. Analytical studies on the prediction of photosensitive /phototoxic potential of pharmaceutical substances. Pharm. Res. 2006, 23, 156-164.
Ou, B., Hampsch-Woodill, M., and Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food. Chem. 2001, 49, 4619-4626.
Pathak, M.A., Worden, L.R., and Kaufman, K.D. Effect of structural alterations on the photosensitizing potency of furocoumarins (psoralens) and related compounds. J. Invest. Dermatol. 1967, 48, 103-118.
Paudel, B., Bhattarai, H.D., Koh, H.Y., Lee, S.G., Han, S.J., Lee, H.K., Oh, H., Shin, H.W., and Yim, J.H. Ramalin, a novel nontoxic antioxidant compound from the Antarctic lichen Ramalina terebrata. Phytomedicine. 2011, 18, 1285-1290.
Payet, B., Shum Cheong Sing, A., and Smadja, J. Assessment of antioxidant activity of cane brown sugars by ABTS and DPPH radical scavenging assays: determination of their polyphenolic and volatile constituents. J. Agric Food. Chem. 2005, 53, 10074-10079.
Perez-Sanchez, A., Barrajon-Catalan, E., Caturla, N., Castillo, J., Benavente-Garcia, O., Alcaraz, M., and Micol, V. Protective effects of citrus and rosemary extracts on UV-induced damage in skin cell model and human volunteers. J. Photochem. Photobiol. Biol. 2014, 136, 12-18.
Phan, T.T., Sun, L., Bay, B.H., Chan, S.Y., and Lee, S.T. Dietary compounds inhibit proliferation and contraction of keloid and hypertrophic scar-derived fibroblasts in vitro: therapeutic implication for excessive scarring. J. Trauma. 2003, 54, 1212-1224.
Philips N1, S.M., Arena R, Chen YJ, Conte J, Natarajan P, Haas G, Gonzalez S. Direct inhibition of elastase and matrixmetalloproteinases and stimulation of biosynthesis of fibrillar collagens, elastin, and fibrillins by xanthohumol. J. Cosmet. Sci. 2010, 61(6), 125-132.
Pinnell, S.R. Regulation of collagen biosynthesis by ascorbic acid: a review. J. Biol Med. 1985, 58, 553-559.
Pourmorad, F., Hosseinimehr, S.J., and Shahabimajd, N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr. J. Bio technol. 2006, 5, 1142-1145.
Proksch, E., Brandner, J.M., and Jensen, J.M. The skin: an indispensable barrier. Exp. Dermatol. 2008, 17, 1063-1072.
Quan, T., Qin, Z., Xia, W., Shao, Y., Voorhees, J.J., and Fisher, G.J. Matrix-degrading metalloproteinases in photoaging. J. Investig, Dermatol. Symp. Proc. 2009, 14, 20-24.
Reagan-Shaw, S., Breur, J., and Ahmad, N. Enhancement of UVB radiation-mediated apoptosis by sanguinarine in HaCaT human immortalized keratinocytes. Mol. Cancer Ther. 2006, 5, 418-429.
Robert, L. Hyaluronan, a truly "youthful" polysaccharide. Its medical applications. Pathol. Biol. 2014, 63, 32-34.
Russo, A., Bonina, E., Acquaviva, R., Campisi, A., Galvano, F., Ragusa, N., and Vanella, A. Red orange extract: Effect on DNA cleavage. J. Food. Sci. 2002, 67, 2814-2818.
Ryu, J., Park, S.J., Kim, I.H., Choi, Y.H., and Nam, T.J. Protective effect of porphyra-334 on UVA-induced photoaging in human skin fibroblasts. Int. J. Mol. Med. 2014, 34, 796-803.
Sardy, M. Role of matrix metalloproteinases in skin ageing. Connect. Tissue. Res. 2009, 50, 132-138.
Scalbert, A., Johnson, I.T., and Saltmarsh, M. Polyphenols: antioxidants and beyond. Am.J. Clin. Nutr. 2005, 81, 215S-217S.
Scharffetter-Kochanek, K., Brenneisen, P., Wenk, J., Herrmann, G., Ma, W., Kuhr, L., Meewes, C., and Wlaschek, M. Photoaging of the skin from phenotype to mechanisms. Exp. Gerontol. 2000, 35, 307-316.
Segawa, S., Yasui, K., Takata, Y., Kurihara, T., Kaneda, H., and Watari, J. Flavonoid glycosides extracted from hop (Humulus lupulus L.) as inhibitors of chemical mediator release from human basophilic KU812 cells. Biosci. Biotechnol. Biochem. 2006, 70, 2990-2997.
Seo, Y.K., Jung, S.H., Song, K.Y., Park, J.K., and Park, C.S. Anti-photoaging effect of fermented rice bran extract on UV-induced normal skin fibroblasts. Eur. Food. Res. Technol. 2010, 231, 163-169.
Shimamura, M., Hazato, T., Ashino, H., Yamamoto, Y., Iwasaki, E., Tobe, H., Yamamoto, K., and Yamamoto, S. Inhibition of angiogenesis by humulone, a bitter acid from beer hop. Biochem. Biophys. Res. 2001, 289, 220-224.
Shirley, B.W. Flavonoid biosynthesis: ''New'' functions for an ''old'' pathway. Trends. Plant. Sci. 1996, 1, 377-382.
Siegel, L., Miternique-Grosse, A., Griffon, C., Klein-Soyer, C., Lobstein, A., Raul, F., and Stephan, D. Antiangiogenic properties of lupulone, a bitter acid of hop cones. Anticancer. Res. 2008, 28, 289-294.
Sim, G.S., Lee, B.C., Cho, H.S., Lee, J.W., Kim, J.H., Lee, D.H., Kim, J.H., Pyo, H.B., Moon, D.C., Oh, K.W., et al. Structure activity relationship of antioxidative property of flavonoids and inhibitory effect on matrix metalloproteinase activity in UVA-irradiated human dermal fibroblast. Arch. Pharm. Res. 2007, 30, 290-298.
Singh, N.P., McCoy, M.T., Tice, R.R., and Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell. Res. 1998, 175, 184-191.
Slominski, A., Tobin, D.J., Shibahara, S., and Wortsman, J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 2004, 84, 1155-1228.
Stevens, J.F., and Page, J.E. Xanthohumol and related prenylflavonoids from hops and beer: to your good health! Phytochem. 2004, 65, 1317-1330.
Sun, S.; Jiang, P.; Su, W.; Xiang, Y.; Li, J.; Zeng, L.; Yang, S., Wild chrysanthemum extract prevents UVB radiation-induced acute cell death and photoaging. Cytotechnology. 2014.
Svobodova, A., Walterova, D., and Vostalova, J. Ultraviolet light induced alteration to the skin. Biomed. Pap. Med. Fac. Univ. Palacky, Olomouc, Czech. 2006, 150, 25-38.
Sweat, F., Puchtler, H., and Rosenthal, S.I. Sirius Red F3ba as a Stain for Connective Tissue. Arch. Pathol. 1964, 78, 69-72.
Taylor, A.W., Barofsky, E., Kennedy, J.A., and Deinzer, M.L. Hop (Humulus lupulus L.) proanthocyanidins characterized by mass spectrometry, acid catalysis, and gel permeation chromatography. J. Agric. Food. Chem. 2003, 51, 4101-4110.
Tullberg-Reinert, H., and Jundt, G. In situ measurement of collagen synthesis by human bone cells with a sirius red-based colorimetric microassay: effects of transforming growth factor beta2 and ascorbic acid 2-phosphate. Histochem. Cell. Biol. 1999, 112, 271-276.
Vaillant, L., and Callens, A. Hormone replacement treatment and skin aging. Therapie. 1996, 51, 67-70.
Van Cleemput, M., Heyerick, A., Libert, C., Swerts, K., Philippe, J., De Keukeleire, D., Haegeman, G., and De Bosscher, K. Hop bitter acids efficiently block inflammation independent of GRalpha, PPARalpha, or PPARgamma. Mol. Nutr. Food. Res. 2009, 53, 1143-1155.
Vayalil, P.K., Elmets, C.A., and Katiyar, S.K. Treatment of green tea polyphenols in hydrophilic cream prevents UVB-induced oxidation of lipids and proteins, depletion of antioxidant enzymes and phosphorylation of MAPK proteins in SKH-1 hairless mouse skin. Carcinogenesis. 2003, 24, 927-936.
Verma, R.P., and Hansch, C. Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs. Bioorg. Med. Chem. 2007, 15, 2223-2268.
Videira, I.F., Moura, D.F., and Magina, S. Mechanisms regulating melanogenesis. An. Bras. Dermatol. 2013, 88, 76-83.
Wang, J.J., Shi, Q.H., Zhang, W., and Sanderson, B.J. Anti-skin cancer properties of phenolic-rich extract from the pericarp of mangosteen (Garcinia mangostana Linn.). Food. Chem. Toxicol. 2012, 50, 3004-3013.
Wang, X., Yang, L., Yang, X., and Tian, Y. In vitro and in vivo antioxidant and antimutagenic activities of polyphenols extracted from hops (Humulus lupulus L.). J.Sci. Food. Agric. 2014, 94, 1693-1700.
Waters, D.J., Shen, S., Xu, H., Kengeri, S.S., Cooley, D.M., Chiang, E.C., Chen, Y., Schlittler, D., Oteham, C., Combs, G.F., Jr., et al. Noninvasive prediction of prostatic DNA damage by oxidative stress challenge of peripheral blood lymphocytes. Cancer. Epidemiol. Biomarkers. Prev. 2007, 16, 1906-1910.
Xiang, Y.; Gao, Q.; Su, W.; Zeng, L.; Wang, J.; Hu, Y.; Nie, W.; Ma, X.; Zhang, Y.; Lee, W.; Zhang, Y., Establishment, characterization and immortalization of a fibroblast cell line from the Chinese red belly toad Bombina maxima skin. Cytotechnology. 2012, 64, 95-105.
Yamaguchi, N., Satoh-Yamaguchi, K., and Ono, M. In vitro evaluation of antibacterial, anticollagenase, and antioxidant activities of hop components (Humulus lupulus) addressing acne vulgaris. Phytomedicine. 2009, 16, 369-376.
Yang, Y.M., Son, Y.O., Lee, S.A., Jeon, Y.M., and Lee, J.C. Quercetin Inhibits alpha-MSH-stimulated Melanogenesis in B16F10 Melanoma Cells. Phytother. Res. 2011, 25, 1166-1173.
Yokozawa, T., and Kim, Y.J. Piceatannol inhibits melanogenesis by its antioxidative actions. Biological. Pharmaceutical. Bulletin. 2007, 30, 2007-2011.
Yoshizumi, M., Nakamura, T., Kato, M., Ishioka, T., Kozawa, K., Wakamatsu, K., and Kimura, H. Release of cytokines/chemokines and cell death in UVB-irradiated human keratinocytes, HaCaT. Cell. Biol. Int. 2008, 32, 1405-1411.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top