跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/01 00:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃俊凱
研究生(外文):Chun-Kai Huang
論文名稱:利用水氡與鐳同位素評估宜蘭地區海底湧泉輸出與通量
論文名稱(外文):Using Radon and Radium isotopes to estimate submarine groundwater flux in Yilan Bay
指導教授:蘇志杰
指導教授(外文):Chih-Chieh Su
口試委員:李孟陽林殷田董家鈞
口試日期:2015-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:59
中文關鍵詞:海底湧泉輸出氡氣蘭陽平原
外文關鍵詞:SGDRadiumRadonYilan Plain
相關次數:
  • 被引用被引用:2
  • 點閱點閱:105
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在以放射性同位素方法估算宜蘭地區海底湧泉的輸出通量及其乾濕季變化。
研究結果發現海水222Rn活度在2014年八月介於0至2.26 Bq/m3,2015年一月活度為4.86至11.02 Bq/m3,海水224Ra活度在2014年八月活度介於0.43至1.14 Bq/m3, 2015年一月由0.48至1.98 Bq/m3。222Rn與224Ra活度冬季高於夏季,顯示地下水輸出訊號會隨著季節改變。
2014年四月至2015年一月,每三個月至蘭陽平原湧泉進行淺層地下水採樣,分析結果發現湧泉224Ra活度均不高,介於0.02至0.29 Bq/m3間,四季活度無明顯變化。222Rn活度介於386至32220 Bq/m3,活度差異甚大,其高值出現在雪山山脈旁之湧泉,越往平原與沿海地區活度越低,雪山山脈旁之湧泉出現氡高鐳低之現象。除湧泉採樣外,2015年一月及三月至礁溪溫泉與冬山600公尺深井做深部來源地下水採樣,發現其224Ra活度比地表湧泉高出許多,礁溪溫泉為2.26 Bq/m3、冬山深井為20.97 Bq/m3。
將本研究海水與湧泉之224Ra活度做比較,發現海水224Ra活度值高於湧泉,有別於地下水224Ra活度高於海水之認知,比對2015年三月之冬山深井,其224Ra活度20.97 Bq/m3遠高於淺層地下水0.02至0.29 Bq/m3,推測海域中可能有深層地下水體輸入。
宜蘭灣海底湧泉輸出通量計算結果顯示,2014年八月輸出量約4.3×106 m3/day,約為每日河水輸出通量的8%;2015年一月輸出量約為8.4×106 m3/day,約為河水輸出通量的16%。營養鹽中硝酸鹽輸出量在2014年八月約為7.7×106 mole/day,高出河水硝酸鹽輸出通量約六倍,一月約為1.5×107 mole/day,高出河水硝酸鹽輸出通量約12倍,硝酸鹽類藉由海底湧泉輸出至宜蘭灣,其通量大於河川輸出,顯示海底湧泉在沿岸生態環境扮演重要角色。


In this study, radon and radium isotopes are used as tracers for SGD survey. The samples were collected from spring-water, coastal seawater, the Lanyang River and its tributaries in dry and wet seasons. Our results show the activities of 224Ra in coastal seawater ranged from 0.43 to 1.14 Bq/m3 in August 2014, 0.48 to 1.98 Bq/m3 in January 2015, and the differences between summer and winter were observed. In spring-water samples, the activities of 222Rn and 224Ra are ranging from 386 to 32220 Bq/m3 and 0.02 to 0.29 Bq/m3, and no significant difference between wet and dry seasons. Unexpectedly, the spring-water samples are characterized with high 222Rn and low 224Ra activities. Compare with the coastal seawater and spring-water samples, the 224Ra activities in coastal seawater are 3-4 times higher than spring-water. A deep groundwater sample which collected from a deep well at 600 meter depth shows high 224Ra activity (20.97 Bq/m3). It reveals that the SGD in the coastal area of the Yilan Plain may derive from deep aquifers.
The evaluation results of SGD flux in Yilan Bay indicate the minimum flux is 4.3×105 m3/day in August 2014, accounting for 8% of the Lanyang River output; 8.4×105 m3/day in January 2015, accounting for 16% of the Lanyang River output. Nitrate flux is 7.7×105 mole/day in August 2014, about 6 times higher than the Lanyang River output;1.5×106 mole/day in January 2015, about 12 times higher than the Lanyang River output.


致謝 i
摘要 iii
ABSTRACT vi
目錄 v
圖目錄 vi
表目錄 vii
第一章 緒論 1
1-1前言 1
1-2 研究區域概況 3
1-3 相關前人研究 6
1-4 研究動機與目的 9
第二章 研究方法及原理 10
2-1鐳和氡同位素之化學特性及分析儀器 11
2-2地下水化學分析 16
2-3採樣與分析方法 18
2-4採樣位置 23
第三章 研究結果 25
3-1近岸海水鐳與氡同位素分析結果 25
3-2地表湧泉及地下水鐳與氡同位素分析結果 27
3-3蘭陽溪流域鐳與氡同位素分析結果 32
3-4氫氧同位素與陰離子分析結果 38
第四章 綜合討論 42
4-1蘭陽平原鐳與氡同位素分佈特徵 42
4-2蘭陽平原海底湧泉輸出與營養鹽通量評估 51
第五章 結論 53
參考文獻 54


【中文部分】
江漢全,1994,蘭陽平原之地下水主要化學成分。中國農業工程學報,第四十卷,第四期,第85-95 頁。
林其郁,2012,臺灣地區水體中水氡之空間分布初探。國立臺灣大學海洋研究所碩士論文,共75頁。
張良正、黃金維、陳文福與張竝瑜,2013,地下水水文地質與補注模式研究補注區劃設與資源量評估(1/4) 。經濟部中央地質調查所,共358頁。
張智欽,1995,宜蘭地區地下水之研究。國立台灣師範大學地理研究所博士論文。共258頁。
張智欽,2000,礁溪溫泉安全出水量之研究。師大地理研究報告,第32期,共28頁。
彭宗仁,1991,蘭陽平原之地下水化學演化研究。台灣農業化學與食品科學,第三十九卷,第六期,423-436。
彭宗仁,1995,宜蘭地區天水和地下水中穩定碳、氫、氧及放射性碳、氚之環境同位素研究。台灣大學地質學研究所博士論文。
彭宗仁、汪中和與劉滄棽,2002,宜蘭雨水之氫氧同位素變化。台灣農業化學與食品科學,第四十卷,第五期,336-346。
經濟部,2009,蘭陽地區地面地下水調配及管理系統建置規劃。經濟部水利署水利規劃試驗所,共405頁。
經濟部,2014,地下水補注地質敏感區劃定計畫書-宜蘭平原。經濟部中央地質調查所,共29頁。
經濟部水利署,2014,中華民國102年水利統計。
賴典章、費立沅與江崇榮,2003,台灣地區地下水分區特性。水文地質調查與運用研討會論文集,第1-24頁。



【英文部分】
Bates, R. L. and Jackson, J. A., 1984. Dictionary of Geological Terms. American Geological Institute, NY.
Bourdon, B., Turner, S., Henderson, G.M., and Lundstrom, C.C., 2003. Introduction to U-series geochemistry. Reviews in Mineralogy and Geochemistry 52, 1–21.
Burnett, W.C., Aggarwal, P.K., Aureli, A., Bokuniewicz, H., Cable, J.E., Charette, M.A.,Kontar, E., Krupa, S., Kulkarni, K.M., Loveless, A., Moore, W.S., Oberdorfer, J.A.,Oliveira, J., Ozyurt, N., Povinec, P., Privitera, A.M.G., Rajar, R., Ramessur, R.T.,Scholten, J., Stieglitz, T., Taniguchi, M., and Turner, J.V., 2006. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Science of the Total Environment 367, 498–543.
Burnett, W. C., Bokuniewicz, H., Huettel, M., Moore, W. S., and Taniguchi, M., 2003. Goundwater and pore water inputs to the coastal zone. Biochemistry 66, 3–33.
Burnett, W.C and Dimova, N., 2012.A radon-based mass balance model for assessing groundwater in fl ows to lakes. Global Environmental Studies In: Taniguchi, M., Shiraiwa, M. (Eds.), The Dilemma of Boundaries: Toward a New Concept of Catchment, Global Environmental Studies.Springer, Japan, 55–66
Burnett, W.C., and Dulaiova, H., 2006. Radon as a tracer ofsubmarine groundwater discharge into a boat basin in Donnalucata, Sicily. Continental Shelf Research 26, 862–873.
Burnett, W.C., Taniguchi, M., and Oberdorfer, J., 2001. Measurement and significance of the direct discharge of groundwater into the coastal zone. J. Sea Research 46 (2), 109–116.
Cartwright, I., Hofmann, H., Gilfedder, B., and Smyth, B., 2014. Understanding parafluvial exchange and degassing to better quantify groundwater inflows using 222Rn: the King River, southeast Australia. Chemical Geology 380, 48–60.
Clark, J. F. and Turekian, K. K., 1990. Timescale of hydrothermal water-rock reactions in Yellowstone National Park based on radium isotopes and radon. Journal of Volcanology and Geothermal Research 40, 169–180..
Craig, H. 1961. Isotopic variations in meteoricwaters. Science 133,1702–1703.
Dulaiova, H., Peterson, R., and Burnett, W. C., 2005. A multi-detector continuous monitor for assessment of 222Rn in the coastal ocean. Journal of Radioanalytical and Nuclear Chemistry 263(2),361–365.
Durridege, 2014. RAD7 radon detector user manual.
Dzhamalov, R.G. and Safronova, T.I., 2002. On Estimating chemical discharge into the world ocean with groundwater. Water Resources 29 (6), 680–686.
Elsinger, R.J and Moore,W.S., 1984. 226Ra and 228Ra in the mixing zones of the Pee Dee River-Winyah Bay, Yangtze River and Delaware Bay estuaries. Estuarine, Coastal and Shelf Science 18, 601–613.
Garcia-Solsona, E., Garcia-Orellana, J., Masqué, P., and Dulaiova, H., 2008. Uncertainties associated with 223Ra and 224Ra measurements in water via a Delayed Coincidence Counter (RaDeCC). Marine Chemistry 109, 198–219.
Garcia-Solsona, E., Garcia-Orellana, J., Masque, P., Rodellas, V., Mej´ıas, M., Ballesteros, B., and Dom´ınguez, J. A., 2010. Groundwater and nutrient discharge through karstic coastal springs. Biogeosciences 7, 2625–2638.
Johannes, R.E., 1980. The ecological significance of the submarine discharge of ground water. Marine Ecology Progress Series 3,365–373.
Kim, G., Ryu, J. W., and Hwang, D. W., 2008. Radium tracing of submarine groundwater discharge (SGD) and associated nutrient fluxes in a highly- permeable bed coastal zone, Korea. Marine Chemistry, 109, 307–317.
Kim, G., Ryu, J. W., Yang, H. S., and Yun, S. T., 2005. Submarine groundwater discharge (SGD) into the Yellow Sea revealed by Ra-228 and Ra-226 isotopes: implications for global silicate fluxes. Earth and Planetary Science Letters 237(1–2), 156–166.
Kwon, E. Y., Kim, G., Primeau, F., Moore, W. S., Hyung-MiCho., DeVries, T., Sarmiento, J. L., Charette, M. A., and Cho, Y. K., 2014. Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model. American Geophysical Union.
Kohout F. A., 1966. Submarine springs: a neglected phenomenon of coastal hydrology. Hydrology 26: 391–413.
Lamontagne, S., Le Gal La Salle, C., Hancock, G. J., Webster, I. T., Simmons, C. T., Love, A. J., James-Smith, J., Smith, A. J., Kampf, J., and Fallowfield, H. J., 2008. Radium and radon radioisotopes in regional groundwater, intertidal groundwater, and seawater in the Adelaide Coastal Waters Study area: implications for the evaluation of submarine groundwater discharge. Marine Chemistry. 109, 318–336.
Lee, DR., 1977. A device for measuring seepage flux in lakes and estuaries. Limnology and Oceanography, 22,140–147.
Lin, I. T., Wang, C. H., You, C. F., Lin, S., Huang, K. F., and Chen, Y. G., 2010. Deep submarine groundwater discharge indicated by tracers of oxygen, strontium isotopes and barium content in the Pingtung coastal zone, southern Taiwan. Marine Chemistry 122, 51–58.
Liu, C. C., 1995. The Ilan plain and the southwestward extending Okinawa trough. Journal of Geology Society 38, 229–242.
Luo, S., Ku, T. L., Roback, R., Murrell, M., and McLing, T.L., 2000. In-situ radionuclide transport and preferential groundwater flows at INEEL (Idaho): decay-series disequilibrium studies. Geochimica et Cosmochimica. Acta 64, 867–881.
Moore, W.S., 1976. Sampling 228Ra in the deep ocean. Deep-Sea Research and Oceanographic Abstracts 23, 647–651.
Moore, W.S., and Arnold, R., 1996. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. Journal of Geophysical Research 101, 1321–1329.
Moore, W. S., 1999. The subterranean estuary: a reaction zone of ground water and sea water. Marine Chemistry 65, 111–126.
Moore, W. S., 2000a. Determining coastal mixing rates using radium isotopes. Continental Shelf Research 20, 1995–2007.
Moore, W.S., 2000b. Ages of continental shelf waters determined from 223Ra and 224Ra. Journal of Geophysical Research 105, 22117–22122.
Moore, W. S., 2003. Sources and fluxes of submarine groundwater discharge delineated by radium isotopes. Biogeochemistry 66, 75–93.
Moore, W. S., 2006. Radium isotopes as tracers of submarine groundwater discharge in Sicily. Continental Shelf Research 26, 852–861.
Peng, T. R., Chen, C. T. A., Wang, C. H., Zhang, J., Lin, Y. J., 2008. Assessment of terrestrial factors controlling the submarine groundwater discharge in water shortage and highly deformed Island of Taiwan, Western Pacific Ocean. Journal of Oceanography 64, 323–337.
Post, V. E., Groen, J., Kooi, H., Person, M., Ge, S., and Edmunds, W. M., 2013. Offshore fresh groundwater reserves as a global phenomenon. Nature 504, 71–78.
Taniguchi, M., Burnett, W. C., Cable, J. E., and Turner, J. V., 2002. Investigations of submarine groundwater discharge. Hydrol Process 16, 2115–2129.
Williams, A. E., 1997. Stable isotope tracers: natural and anthropogenic recharge,Orange County, California. Journal of Hydrology 201, 230–248.
Winter, T. C., Harvey, J. W., Franke, O. L., and Alley, W. M., 1998. Groundwater and surface water – a single resource. US Geological Survey Circ 1139.
Xu, B. C., Burnett, W. C., lane-Smith, D., and Yu, Z.-G., 2010. A simple laboratory-based radon calibration system. Journal of Radioanalytical and Nuclear Chemistry 283, 457–463.
Yang, T. F., Lan, T. F., Lee, H. F., Fu, C. C., Chuang, P. C., Chen, C-H., Chen, C. T. A. and Lee, C. S. 2005. Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications. Geochemical Journal 39, 469–480.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top