跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 18:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭匡庭
研究生(外文):Kuan-ting Chen
論文名稱:溫度變化和漁業壓力如何對魚群的體長結構造成影響?
論文名稱(外文):How do temperature and fishing affect the size structure of fish populations?
指導教授:謝志豪謝志豪引用關係
指導教授(外文):Chih-hao Hsieh
口試委員:王慧瑜葉信明林幸助沈聖峰
口試日期:2015-07-09
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:36
中文關鍵詞:體長結構變異分配漁撈效應海水升溫統合分析
外文關鍵詞:size structurevariation partitioningfishing effectstemperature effectsmeta-analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
體長結構 (size structure)是代表魚群狀態的重要指標,因為它可以反應魚群的穩定度、對環境的抵抗力、以及族群的生產力。過去研究顯示體長結構主要受到 (1) 漁業捕撈以及 (2) 溫度變化 兩者的影響。然而,漁撈及溫度變化哪一者對體長結構有較大的影響並不清楚。另一方面,以往研究多使用體長結構指標 (size-based indicator)將體長結構簡化為單一指標來表示體長結構的變化,然而許多研究顯示這些指標僅能反應體長結構部分的變化,不一定能反應體長結構整體的改變,所以本篇的目的是使用多元回歸分析中的變異分配,來分析完整的體長結構變化,藉以了解23個經濟魚種的體長結構如何受到溫度變化和捕撈影響,以及去探討他們是否有一個交互作用。
研究顯示漁撈和溫度變化都會對體長結構造成影響,但線性的交互影響很小甚至沒有。我進一步去探討哪些因子與影響程度有相關,我發現會影響的因子包括1. 物種本身生長速率、2. 其受捕撈的程度與3. 其環境溫度變化的速率。其中漁撈對體長結構的影響與物種生長速率呈負相關,表示生長較慢的魚群其體長結構受漁撈的影響程度較大;另外,漁撈和溫度對體長結構的影響程度分別與溫度變化還有捕撈強度有關,而進一步使用廣義線性混合的效應模型(GLMM)去驗證單一因子是否有顯著影響,僅溫度在體長結構中影響程度與漁撈強度有顯著正相關;這些結果表示,即使在變異分配分析中線性的交互影響並不顯著,漁撈與溫度變化的交互作用可透由加乘的方式存在,且機制為:當魚群受到較強的捕撈,其族群對環境抵抗力較弱,較容易在其體長結構找到溫度的影響。本研究也將變異分配分析之結果與常用的體長結構指標做比較,我發現變異分配爭對上述漁撈與溫度變化之分析有較低的p值,亦即結果較顯著;因此,相較於傳統指標,使用變異分配分析體長結構受外在因素影響的程度是較有效的方法。


Influenced by growth, maturation, and mortality history, size structure represents a key demographic characteristic of fish populations, and plays an important role in maintaining stability and reproductive output. There are two important external forces that potentially shrink the size structure of a fish population: fishing and warming. Nevertheless, the relative importance of fishing and warming in affecting size structure of fishes has not been quantified. In addition, existing analysis focus on size-based indicators (SBIs) to represent the size structure of fish population, but some of them may not effectively quantify external forces on size structure. To bridge the knowledge gap, we used variation partitioning approach to quantify the relative contribution of temperature, fishing on size structure of exploited stocks, and then test whether these two factors have an interactive effect. We analyze the size structure (length frequency) of 23 exploited stocks in the Northeast Pacific, Northeast Atlantic, Mediterranean Sea, North Sea, Baltic Sea and Arctic Sea. Our results showed that the variance of size structure is affected both by fishing (explaining on average of 9.29%) and temperature (explaining on average of 9.29%). In comparison, the interactive effect on size structure was very subtle (on average of 1.79%). We then examined what determined the relative contribution of fishing and temperature. We found that the relative contribution was related to life history traits, mean fishing mortality, and increasing rate of temperature. Specifically, our result showed that fishing effect on size structure significantly decreased with the growth rate, suggesting the size structure of K-selected species was influenced more by fishing. Furthermore, the temperature effect significantly increased with the intensity of fishing, suggesting that fishing makes the exploited stocks more vulnerable to environmental changes. Finally, by comparing our results of variation partitioning approach versus indicators-based analysis, we found that variation partitioning serving as a size structure-based analysis outperformed analysis using SBIs in terms of the lower p-values, suggesting that the size structure-based analysis featured the adoption of variation partitioning is a more suitable method to investigate the external effects on size structure of fish populations.

致謝.................................................................................................................................. i
中文摘要.......................................................................................................................... iii
Abstract............................................................................................................................ v
Contents........................................................................................................................... vii
Figure............................................................................................................................... viii
Table................................................................................................................................. ix
Introduction...................................................................................................................... 1
Materials and Methods................................................................................................... 6
Size structure (length frequency) of commercial stocks........................................... 6
Fishing mortality....................................................................................................... 6
Sea surface temperature............................................................................................ 7
Variation partitioning to explain size structure......................................................... 8
Candidates affect the relative contribution of fishing and temperature effect.......... 8
Results............................................................................................................................ 11
Variation partitioning................................................................................................ 11
Factors relating to the contribution of fishing and temperature ............................... 11
Discussions...................................................................................................................... 12
Relative effect of fishing versus temperature on fish size structure........................ 12
The influence of life history traits on fishing effect................................................. 13
The influence of habitat type on fishing and temperature effects............................13
Interactive effect of fishing and temperature exists via multiple ways....................15
Comparison between size structure based analysis and size-based indicators......... 15
The limitation of this research................................................................................. 16
References...................................................................................................................... 17
Appendix........................................................................................................................ 36


Anderson PJ, and Piatt JF (1999). Community reorganization in the Gulf of Alaska following ocean climate regime shift. Mar Ecol Prog Ser 189: 117–123
Anderson CNK, Hsieh C, Sandin S a, Hewitt R, Hollowed A, Beddington J, May RM, Sugihara G (2008) Why fishing magnifies fluctuations in fish abundance. Nature 452:835–9
Aubone A (2004) Loss of stability owing to a stable age structure skewed toward juveniles. Ecol Modell 175:55–64
Baudron AR, Needle CL, Rijnsdorp AD, Tara Marshall C (2014) Warming temperatures and smaller body sizes: synchronous changes in growth of North Sea fishes. Glob Chang Biol 20:1023–1031
Bell RJ, Richardson DE, Hare JA, Lynch PD, Fratantoni PS (2015) Disentangling the effects of climate, abundance, and size on the distribution of marine fish: an example based on four stocks from the Northeast US shelf Richard. ICES J Mar Science 72:1311–1322
Berkeley S, Hixon M, Larson R, Love M (2004) Fisheries sustainability via protection of age structure and spatial distribution of fish populations. Fisheries 29:23–32
Bianchi G, Gislason H, Graham K, Hill, L, Jin X, Koranteng K, Manickchand-Heileman S, Paya I, Sainsbury K, Sanchez F, and Zwanenburg K (2000) Impact of fishing on size composition and diversity of demersal fish communities. ICES J Mar Science 57:558–571
Birkeland C, Dayton P (2005) The importance in fishery management of leaving the big ones. Trends Ecol Evol 20:356–8
Blanchard JL, Dulvy NK, Jennings S, Ellis JR, and others (2005) Do climate and fishing influence size-based indicators of Celtic Sea fish community structure? ICES J Mar Science 62: 405-411.
Bondell HD, Reich BJ (2009) Simultaneous factor selection and collapsing levels in ANOVA. Biometrics 65:169–77
Breslow NE, Clayton DG (1993). Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 88: 9–25.
Brunel T, Piet G (2013) Is age structure a relevant criterion for the health of fish stocks? ICES J Mar Science 70:270–283
Caruso NM, Sears MW, Adams DC, Lips KR (2014) Widespread rapid reductions in body size of adult salamanders in response to climate change. Glob Chang Biol 20:1751–9
Daan N, Gislason H, Gpope J, Crice J (2005) Changes in the North Sea fish community: evidence of indirect effects of fishing? ICES J Mar Science 62:177–188
Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystem. Proc Natl Acad Sci 106:12788–12793
Duplisea DE, Blanchard F (2005) Relating species and community dynamics in an heavily exploited marine fish community. Ecosystems 8:899–910
EC. (2008) Establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). EC 56: 40.
Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–51
Ginter K, Kangur A, Kangur P, Kangur K (2015) Consequences of size-selective harvesting and changing climate on the pikeperch Sander lucioperca in two large shallow north temperate lakes. Fish Res 165:63–70
Hansen MJ, Nate NA (2014) Effects of recruitment, growth, and exploitation on walleye population size structure in northern Wisconsin lakes. J Fish Wildl Manag 5:99–108
Heikinheimo O, Pekcan-Hekim Z, Raitaniemi J (2014) Spawning stock–recruitment relationship in pikeperch Sander lucioperca (L.) in the Baltic Sea, with temperature as an environmental effect. Fish Res 155:1–9
Hidalgo M, Tomás J, Moranta J, Morales-Nin B (2009) Intra-annual recruitment events of a shelf species around an island system in the NW Mediterranean. Estuar Coast Shelf Sci 83:227–238
Hidalgo M, Rouyer T, Molinero J, Massutí E, Moranta J, Guijarro B, Stenseth N (2011) Synergistic effects of fishing-induced demographic changes and climate variation on fish population dynamics. Mar Ecol Prog Ser 426:1–12
Hinrichsen HH, St. John M, Lehmann A, MacKenzie BR, Köster FW (2002) Resolving the impact of short-term variations in physical processes impacting on the spawning environment of eastern Baltic cod: application of a 3-D hydrodynamic model. J Mar Syst 32:281–294
Hixon MA, Johnson DW, Sogard SM (2014) BOFFFFs: on the importance of conserving old-growth age structure in fishery populations. ICES J Mar Sci 71: 2171−2185
Hsieh C, Reiss C, Hunter J, Beddington J (2006) Fishing elevates variability in the abundance of exploited species. Nature 443:859–862
Hsieh C, Reiss C, Watson W (2005) A comparison of long-term trends and variability in populations of larvae of exploited and unexploited fishes in the Southern California region: a community approach. Prog Oceanogr 67:160–185
Hsieh C, Yamauchi A, Nakazawa T, Wang W (2010) Fishing effects on age and spatial structures undermine population stability of fishes. Aquat Sci 72:165–178
Jennings S, Greenstreet S, Reynolds J (1999) Structural change in an exploited fish community:a consequence of differential fishing effects on species with contrasting life histories. J Anim Ecol 68: 617−627
Levi D, Andreoli MG, Bonanno A, Fiorentino F and others (2003) Embedding sea surface temperature anomalies into the stock recruitment relationship of red mullet (Mullus barbatus L. 1758) in the Strait of Sicily. Sci Mar 67: 259−268
Lindegren M, Checkley DM, Rouyer T, MacCall AD, Stenseth NC (2013) Climate, fishing, and fluctuations of sardine and anchovy in the California Current. Proc Natl Acad Sci U S A 110:13672–7
Longhurst A (2002) Murphy’s law revisited: longevity as a factor in recruitment to fish populations. Fish Res 56:125–131
Marteinsdottir G, Thorarinsson K (1998) Improving the stock–recruitment relationship in Icelandic cod (Gadus morhua L.) by including age diversity of spawners. Can J Fish Aquat Sci 55: 1372−1377
Massutí E, Monserrat S, Oliver P, Moranta J, López-Jurado JL, Marcos M, Hidalgo M, Guijarro B, Carbonell A, Pereda P (2008) The influence of oceanographic scenarios on the population dynamics of demersal resources in the western Mediterranean: hypothesis for hake and red shrimp off Balearic Islands. J Mar Syst 71:421–438
Miller J, Burke J, Fitzhugh G (1991) Early life history patterns of Atlantic North American flatfish: likely (and unlikely) factors controlling recruitment. Netherlands J Sea Res 27:261–275
Montero-Serra I, Edwards M, Genner MJ (2015) Warming shelf seas drive the subtropicalization of European pelagic fish communities. Glob Chang Biol 21:144–53
Murphy G (1967) Vital statistics of the Pacific sardine (Sardinops caerulea) and the population consequences. Ecology 48:731-736
Neuheimer AB, Grønkjaer P (2012) Climate effects on size-at-age: growth in warming waters compensates for earlier maturity in an exploited marine fish. Glob Chang Biol 18:1812–1822
Nissling A (2004) Effects of temperature on egg and larval survival of cod (Gadus morhua) and sprat (Sprattus sprattus) in the Baltic Sea – implications for stock development. Hydrobiologia 514:115–123
O’Brien L, Rago PJ, Lough RG, Berrien P (2003) Incorporating early–life history parameters in the estimation of the stock–recruitment relationship of Georges Bank Atlantic cod (Gadus morhua). J Northwest Atl Fish Sci 33: 191–205
Ottersen G, Hjermann DO, Stenseth NC (2006) Changes in spawning stock structure strengthen the link between climate and recruitment in a heavily fished cod (Gadus morhua) stock. Fish Oceanogr 15:230–243
Pekcan-Hekim Z, Urho L, Auvinen H, Heikinheimo O, Lappalainen J, Raitaniemi J, Söderkultalahti P (2011) Climate Warming and Pikeperch Year-Class Catches in the Baltic Sea. Ambio 40:447–456
Peres-Neto P, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625
Perry RI, Cury P, Brander K, Jennings S, Möllmann C, Planque B (2010) Sensitivity of marine systems to climate and fishing: Concepts, issues and management responses. J Mar Syst 79:427–435
Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–5
Piet GJ, Albella AJ, Aro E, Farrugio H, Lleonart J, Lordan C, Mesnil B, Petrakis G, Pusch C, Radu G, Rätz H (2010). Marine Strategy Framework Directive – Task group 3 report commercially exploited fish and shellfish, In: Doerner, H., Scott, R. (eds.), JRC Scientific and Technical Reports. European Commission and ICES, Luxembourg, p. 82.
Planque B, Fromentin J, Cury P, Drinkwater KF, Jennings S, Perry RI, Kifani S (2010) How does fishing alter marine populations and ecosystems sensitivity to climate? J Mar Syst 79:403–417
Pörtner H, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315: 95-97
Rijnsdorp AD, Peck MA, Engelhard GH, Mollmann C, Pinnegar JK (2009) Resolving the effect of climate change on fish populations. ICES J Mar Sci 66:1570−1583
Ripa J, Olofsson H, Jonzén N (2010) What is bet-hedging, really? Proc Biol Sci 277:1153–1154
Rochet M, Trenkel VM, Carpentier A, Coppin F, Sola LG De, Léauté J, Mahé J, Maiorano P, Mannini A, Murenu M, Piet G, Politou C, Reale B, Spedicato M, Tserpes G, Bertrand J A (2010) Do changes in environmental and fishing pressures impact marine communities? An empirical assessment. J Appl Ecol 47:741–750
Rose G (2005) On distributional responses of North Atlantic fish to climate change. ICES J Mar Science 62:1360–1374
Rouyer T, Fromentin J, Hidalgo M, Stenseth NC (2014) Combined effects of exploitation and temperature on fish stocks in the Northeast Atlantic. ICES J Mar Science 71:1554–1562
Rouyer T, Sadykov A, Ohlberger J, Stenseth NC (2012) Does increasing mortality change the response of fish populations to environmental fluctuations? Ecol Lett 15:658–665
Scott BE, Marteinsdottir G, Begg GA, Wright PJ, Kjesbu OS (2006) Effects of population size/age structure, condition and temporal dynamics of spawning on reproductive output in Atlantic cod (Gadus morhua). Ecol Modell 191:383–415
Shin Y, Rochet M, Jennings S, Field J, Gislason H (2005) Using size-based indicators to evaluate the ecosystem effects of fishing. ICES J Mar Science 62:384–396
Simpson SD, Blanchard J, Genner M (2013). Impacts of climate change on fish. MCCIP Science Review 2013, 113-124.
Simpson SD, Jennings S, Johnson MP, Blanchard JL, Schön P, Sims DW, Genner MJ (2011) Continental shelf-wide response of a fish assemblage to rapid warming of the sea. Curr Biol 21:1565–70
Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s Historical Merged Land–Ocean Surface Temperature Analysis (1880–2006). J Clim 21:2283–2296
Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan K, Lima M (2002) Ecological Effects of Climate Fluctuations. Science 297:1292–1296
Stige LC, Ottersen G, Brander K, Chan KS, Stenseth NC (2006) Cod and climate: effect of the North Atlantic Oscillation on recruitment in the North Atlantic. Mar Ecol Prog Ser 325: 227−241
Swain DP, Sinclair AF, Castonguay M, Chouinard GA, Drinkwater KF, Fanning LP, Clark DS (2003) Density-versus temperature-dependent growth of Atlantic cod (Gadus morhua) in the Gulf of St. Lawrence and on the Scotian Shelf. Fish Res 59:327–341
Sweeting CJ, Badalamenti F, Anna GD, Pipitone C, Polunin NVC (2009) Steeper biomass spectra of demersal fish communities after trawler exclusion in Sicily. ICES J Mar Science 62:384–396
Tao J, Littell R, Patetta M, Truxillo C, Wolfinger R (2002) Mixed Model Analyses Using the SAS System Course Notes. SAS Institute Inc., Cary, NC.
Trippel EA, Kjesbu OS, Solemdal P (1997) Effects of adult age and size structure on reproductive output in marine fishes. Fish Fish Ser 21:31–62
Wang H, Botsford LW, White JW, Fogarty MJ and others (2014) Effects of temperature on life history set the sensitivity to fishing in Atlantic cod Gadus morhua. Mar Ecol Prog Ser 514: 217-229.
Wright PJ, Trippel E A (2009) Fishery-induced demographic changes in the timing of spawning: consequences for reproductive success. Fish Fish 10:283–304
Zwanenburg K (2000) The effects of fishing on demersal fish communities of the Scotian Shelf. ICES J Mar Science 57:503–509


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top