跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 08:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊箴芸
研究生(外文):Chien-Yun Yang
論文名稱:捕食者及獵物多樣性關係及其對食階交互作用之影響—以海洋浮游性細菌與超微細鞭毛蟲為例
論文名稱(外文):Predator and prey biodiversity relationship and its consequences on trophic interaction—Interplay of marine nanoflagellates and bacterioplankton
指導教授:謝志豪謝志豪引用關係
口試委員:于宏燦湯森林吳哲宏劉少倫
口試日期:2015-07-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:50
中文關鍵詞:獵物-捕食者交互作用生物多樣性生物豐度海洋原生生物海洋浮游性細菌illumina定序
外文關鍵詞:predator-prey interactionbiodiversityabundancemarine protistsmarine bacterioplanktonillumina sequencing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
了解捕食者-獵物多樣性之關係在生態學中一直是很重要的議題。本研究以南東海之超微細鞭毛蟲(捕食者)和浮游性細菌(獵物)作為探討獵物及捕食者多樣性關係之研究對象。我們以illumina Miseq定序16S與18S rDNA序列分別估算超微細鞭毛蟲和浮游性細菌多樣性; 以螢光顯微鏡和流式細胞儀分別對超微細鞭毛蟲和細菌之細胞做計數,以取得兩者豐度資料。本研究以線性回歸與結構方程模型分析探究捕食者及獵物的關係,同時也考慮環境因子,以區別環境因子對獵物及捕食者的同時影響。結果顯示,捕食者及獵物多樣性呈現正相關,顯示獵物多樣性支持著捕食者多樣性 (bottom-up control)。另外,為了考慮微細鞭毛蟲會對於細菌獵物有選擇性的可能,本研究也將細菌分為兩不同功能性(自營性及異營性細菌),並分別探討其與超微細鞭毛蟲的關係。結果發現,只有當獵物為異營性細菌時,捕食者/獵物多樣性比值與獵物豐度呈現負相關,表示較高多樣性的捕食者會減少獵物的豐度,而獵物的多樣性則會阻礙獵物的捕食。整體而言,位於南東海的超微細鞭毛蟲和細菌兩者多樣性彼此相互影響 ,並且超微細鞭毛蟲對不同功能性的細菌獵物會呈現不同的機制。

Understanding predator-prey biodiversity relationship has been an important issue for ecology. Here, for the first time, we examined the biodiversity relationship and its consequences on trophic interaction between nanoflagellates (predators) and bacteria (prey) in the southern East China Sea. We obtained the nanoflagellates and bacterial biodiversity data through the sequences of 18S and 16S rDNA respectively with illumina Miseq, and abundance data by using epifluorescence microscopic and flow cytometry counting, respectively. Specifically, we evaluate the relationship between nanoflagellates and bacteria biodiversities and abundances after accounting for the environmental variables with linear regression and structural equation modeling analyses. Our results indicate that predator and prey diversity were positive related, suggesting bottom-up effects of prey diversity to promote predator diversity. For considering the possible selective behavior of nanoflagellates, we also examined the relationship between nanoflagellates and two functional groups of bacteria (autotrophic and heterotrophic bacteria). We found heterotrophic bacteria abundance increased with decreasing predator/prey diversity ratio, indicating that consumption of predators decreased with increasing prey diversity and decreasing predator diversity, which corresponds to the resource concentration hypothesis. We, however, did not find specific pattern for the autotrophic bacteria. Our results indicate that the bottom-up and top-down processes interactively controls bacterioplankton and nanoflagellates communities, and nanoflagellates responded differently to different functional groups of bacteria in the southern East China Sea.

Table of content
口試委員會審定書.......................................................................................................... i
中文摘要.......................................................................................................................... ii
Abstract........................................................................................................................... ii
Table of content.............................................................................................................. iv
Introduction...................................................................................................................... 1
Materials and Methods................................................................................................... 5
Sample collection....................................................................................................... 5
Estimating abundance……………………………….................................................5
Estimating diversity………………………………................................................... .6
Environmental data.....................................................................................................7
Data analysis...............................................................................................................8
Results.............................................................................................................................11
Predator and prey diversity effects on each other abundance..................................11
Synergistic effect of predator and prey diversity on their abundance......................11
Predator-prey diversity relationship……………………………………………….11
Analyses on different functional groups of bacteria………………………….........12
Discussion....................................................................................................................... 14
The mechanisms and consequences of predators and prey diversity effect.............14
Predator-prey diversity relationship.........................................................................14
Predator-prey relationship considering different functional groups of prey........…15
Predator-prey relationship revealing with two biodiversity indices: OUT richness and phylogenetic diversity…………………………………………………………16
Figures……………………………………………………………………….………...18
References...................................................................................................................... 33
Appendix........................................................................................................................ 38



Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263
Baldauf SL (2003) The deep roots of eukaryotes. Science 300:1703–1706
Basu BK, Pick FR (1997) Factors related to heterotrophic bacterial and flagellate abundance in temperate rivers. Aquat Microb Ecol 12:123–129
Bell T, Bonsall MB, Buckling A, Whiteley AS, Goodall T, Griffiths RI (2010) Protists have divergent effects on bacterial diversity along a productivity gradient. Biol Lett 6:639–642
Berry D, Mahfoudh K Ben, Wagner M, Loy A (2011) Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Appl Environ Microbiol 77:7846–7849
Bruno JF, O’Connor MI (2005) Cascading effects of predator diversity and omnivory in a marine food web. Ecol Lett 8:1048–1056
Byrnes J, Stachowicz JJ, Hultgren KM, Randall Hughes A, Olyarnik SV., Thornber CS (2006) Predator diversity strengthens trophic cascades in kelp forests by modifying herbivore behaviour. Ecol Lett 9:61–71
Cai L, Ye L, Tong AHY, Lok S, Zhang T (2013) Biased diversity metrics revealed by bacterial 16S pyrotags derived from different primer sets. PLoS One 8:1–11
Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010a) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–7
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, Mcdonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010b) correspondEnce QIIME allows analysis of high- throughput community sequencing data Intensity normalization improves color calling in SOLiD sequencing. Nat Publ Gr 7:335–336
Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, A.Wardle D, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Corrigendum: biodiversity loss and its impact on humanity. Nature 489:326–326
Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–92
Chao A (2012) Coverage-based rarefaction and extrapolation : standardizing samples by completeness rather than size. 93:2533–2547
Chao A, Chiu CH, Hsieh TC, Davis T, Nipperess DA, Faith DP (2014) Rarefaction and extrapolation of phylogenetic diversity. Methods Ecol Evol 6(4):380-388
Chung CC, Huang CY, Gong GC, Lin YC (2014) Influence of the Changjiang River flood on Synechococcus ecology in the surface waters of the East China Sea. Microb Ecol 67:273–85
Claesson MJ, Wang Q, O’Sullivan O, Greene-Diniz R, Cole JR, Ross RP, O’Toole PW (2010) Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res 38:e200
Doi H, Chang KH, Nishibe Y, Imai H, Nakano SI (2013) Lack of Congruence in Species Diversity Indices and Community Structures of Planktonic Groups Based on Local Environmental Factors. PLoS One 8(7):e69594
Duffy JE (2002) Biodiversity and ecosystem function: the consumer connection. Oikos 99:201–219
Duffy JE, Cardinale BJ, France KE, McIntyre PB, Thébault E, Loreau M (2007) The functional role of biodiversity in ecosystems: Incorporating trophic complexity. Ecol Lett 10:522–538
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–1
Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essington TE, Holt RD, Jackson JBC, Marquis RJ, Oksanen L, Oksanen T, Paine RT, Pikitch EK, Ripple WJ, Sandin SA, Scheffer M, Schoener TW, Shurin JB, Sinclair ARE, Soulé ME, Virtanen R, Wardle Da (2011) Trophic downgrading of planet Earth. Science 333:301–306
Faith DP 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61: 1-10
Finke DL, Denno RF (2005) Predator diversity and the functioning of ecosystems: The role of intraguild predation in dampening trophic cascades. Ecol Lett 8:1299–1306
Fox JW (2004) Effects of algal and herbivore diversity on the partitioning of biomass within and among trophic levels. Ecology 85:549–559
Gamfeldt L, Hillebrand H, Jonsson PR (2005) Species richness changes across two trophic levels simultaneously affect prey and consumer biomass. Ecol Lett 8:696–703
different grazing impacts on natural bacterial communities. Environ Microbiol 12:3105–3113
Gong GC, Chen YLL, Liu KK (1996) Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: Implications in nutrient dynamics. Cont Shelf Res 16:1561–1590
Gong GC, Wen YH, Wang BW, Liu GJ (2003) Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep Sea Res Part II Top Stud Oceanogr 50:1219–1236
Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, Bank M Van Der, Reeves G, Balmford A, Manning JC, Hedderson TAJ, Savolainen V (2010) Preserving the evolutionary potential of floras in biodiversity hotspots. 445:757–760
Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, Boutte C, Burgaud G, Vargas C de, Decelle J, Campo J Del, Dolan JR, Dunthorn M, Edvardsen B, Holzmann M, Kooistra WHCF, Lara E, Bescot NLE, Logares R, Mahé F, Massana R, Montresor M, Morard R, Not F, Pawlowski J, Probert I, Sauvadet AL, Siano R, Stoeck T, Vaulot D, Zimmermann P, Christen R (2013) The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res 41:D597–604
Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward D V, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Desantis TZ, Sodergren E, Methe B, Human T, Consortium M, Petrosino JF, Knight R, Birren BW (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. 21:494–504
Hadas O, Malinsky-Rushansky N, Pinkas R, Cappenberg TE (1998) Grazing on autotrophic and heterotrophic picoplankton by ciliates isolated from Lake Kinneret, Israel. J Plankton Res 20:1435–1448
Hahn MW, Höfle MG (2001) Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol Ecol 35:113–121
Hu SK, Liu Z, Lie AA. Y, Countway PD, Kim DY, Jones AC, Gast RJ, Cary SC, Sherr EB, Sherr BF, Caron DA. (2015) Estimating protistan diversity using high-throughput sequencing. J Eukaryot Microbiol 0:1-6
Huse SM, Huber J A, Morrison HG, Sogin ML, Welch DM (2007) Accuracy and quality of massively-parallel DNA pyrosequencing. Genome Biol 8:R143
Keesing F, Holt RD, Ostfeld RS (2006) Effects of species diversity on disease risk. Ecol Lett 9:485–498
Knop E, Zünd J, Sanders D (2014) Interactive prey and predator diversity effects drive consumption rates. Oikos 123(10):1244-1249
Leibold AM (1989) Resource edibility and the effects of predators and productivity on the outcome of trophic interaction. The Amareican Naturalist 134:992-949
Lin YC, Campbell T, Chung CC, Gong GC, Chiang KP, Worden AZ (2012) Distribution patterns and phylogeny of marine stramenopiles in the north pacific ocean. Appl Environ Microbiol 78:3387–99
Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector a, Hooper DU, Huston M a, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808
Mahé F, Mayor J, Bunge J, Chi J, Siemensmeyer T, Stoeck T, Wahl B, Paprotka T, Filker S, Dunthorn M (2014) Comparing high-throughput platforms for Sequencing the V4 region of SSU-rDNA in environmental microbial eukaryotic diversity surveys. J Eukaryot Microbiol 62(3):338–345
Marie D, Partensky F, Jacquet S, Biologique S, Universitté I, Curie M (1997) Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl Environ Microbiol 63(1): 186–193.
Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13:31
Montagnes DJS, Barbosa AB, Boenigk J, Davidson K, Jürgens K, Macek M, Parry JD, Roberts EC, Šimek K (2008) Selective feeding behaviour of key free-living protists: avenues for continued study. Aquat Microb Ecol 53:83–98
Muylaert K, Gucht K Van Der, Vloemans N, Meester LDe, Gillis M, Vyverman W (2002) Relationship between bacterial community composition and bottom-up versus top-down variables in four eutrophic shallow lakes. Environ. Microbil 68(10):4740.
Nakagawa Y, Endoi Y, Taki K (2002) Contribution of heterotrophic and autotrophic prey to the diet of euphausiid, Euphausia pacific in the coastal waters off northeastern Japan. Polar bioscience 15 :52–65
O’Connor MI, Bruno JF (2009) Predator richness has no effect in a diverse marine food web. J Anim Ecol 78:732–740
Özkan K, Jeppesen E, Davidson TA., Sndergaard M, Lauridsen TL, Bjerring R, Johansson LS, Svenning JC (2014) Cross-taxon congruence in lake plankton largely independent of environmental gradients. Ecology 95:2778–2788
Pearson CV, Dyer LA (2006) Trophic diversity in two grassland ecosystems. J Insect Sci 6:1–11
Press B (1979) Nutritional mode of several non-pigmented microflagellates from the york river estuary, Virginia. J. exp. mar. Biol. Ecol 39(2):125–134
Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig a, Leemans R, Lodge DM, Mooney H a, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774
Saleem M, Fetzer I, Harms H, Chatzinotas A (2013) Diversity of protists and bacteria determines predation performance and stability. ISME J 7:1912–21
Sarkar S (1999) Wilderness preservation and biodiversity conservation: keeping divergent goals distinct. bioscience 49:405
Shao J, Ray TS (2010) Maintenance of species diversity by predation in the tierra system. Artif Life XII Proc 12th Int Conf Synth Simul Living Syst:533–540
Siemann E (1998) Experimental tests of effects of plant productivity and diversity on grassland arthropod diversity.Ecology 79:2057–2070
Stachowicz JJ, Bruno JF, Duffy JE (2007) Understanding the effects of marine biodiversity on communities and ecosystems. Annu Rev Ecol Evol Syst 38:739–766
Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner HW, Richards TA. (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19:21–31
Suzuki MT (1999) Effect of protistan bacterivory on coastal bacterioplankton diversity. Aquat Microb Ecol 20:261–272
Tanaka R, Hino A, Tsai IJ, Palomares-Rius JE, Yoshida A, Ogura Y, Hayashi T, Maruyama H, Kikuchi T (2014) Assessment of helminth biodiversity in wild rats using 18S rDNA based metagenomics. PLoS One 9:e110769
Tsai AY, Chiang KP, Chang J, Gong GC (2005) Seasonal diel variations of picoplankton and nanoplankton in a subtropical western Pacific coastal ecosystem. Limnol Oceanogr 50:1221–1231
Tsai AY, Gong GC, Chiang KP, Chao CF, Liao H-K, Shiah F-K (2011) Temporal and spatial variations of picoplankton and nanoplankton and short-term variability related to stormy weather in the danshui river estuary in northern Taiwan. Terr Atmos Ocean Sci 22:79
Unrein F, Gasol JM, Not F, Forn I, Massana R (2014) Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME J 8:164–76
Vaulot D (2002) Are autotrophs less diverse than heterotrophs in marine picoplankton? Trends Microbiol 10:266–267
Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top