跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/05 13:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王琇慧
研究生(外文):Siou-Huei Wang
論文名稱:日本鵪鶉卵黃囊膜內胚層上皮細胞藉由cyclicAMP調控第一型固醇轉醯酶增加膽固醇酯化之機制
論文名稱(外文):Sterol O-acyltransferase 1 enhances cholesterol esterification via cyclic AMP-dependent pathway in the yolk sac membrane endodermal epithelial cells of quails
指導教授:丁詩同丁詩同引用關係
指導教授(外文):Shih-Torng Ding
口試委員:劉逸軒陳洵一許炯偉
口試委員(外文):YI-SYUAN LIOUSYUN-YI CHENJYONG-WEI SYU
口試日期:2015-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:動物科學技術學研究所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:73
中文關鍵詞:第一型固醇轉醯酶膽固醇酯cAMP-dependent pathway卵黃囊膜胚胎發育
外文關鍵詞:Sterol O-acyltransferase 1cholesteryl estercAMP-dependent pathwayyolk sac membraneembryonic development
相關次數:
  • 被引用被引用:1
  • 點閱點閱:57
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
營養分之吸收利用於胚胎發育過程中扮演重要角色,禽胚隨著胚胎發育衍生出胚外組織卵黃囊膜 (yolk sac membrane, YSM),覆蓋整個卵黃以吸取蛋中之營養分,YSM由外胚層、中胚層、及內胚層三個胚層細胞所構成,其中內胚層上皮細胞 (endodermal epithelial cells, EECs) 為主要吸收營養分之細胞。禽胚於孵化前一週為快速生長發育期,卵黃內約 68% 的脂質會於此時期大量被吸收利用,此時期死亡的禽胚未能有效利用脂質,孵出之雛禽仍有 YSM 滯留於體外、未吸收入腹腔之現象,因此增加胚胎發育時期脂質之利用可改善胚胎發育及孵化率,然而目前對於YSM如何利用卵黃之機制尚未釐清,因此本試驗之目的為探討卵黃囊膜 EECs 利用卵黃中脂質之機制,以提升胚胎孵化率。
  卵黃中游離之膽固醇,在孵化後期大量於 EECs 中被酯化成膽固醇酯,固醇轉醯酶 (sterol O-acyltransferase, SOAT) 能將膽固醇與長鏈脂肪酸酯化,在哺乳動物中 SOAT 有兩種同功酶,SOAT1 及 SOAT2,然而在家禽胚胎 YSM 中 SOAT1 為主要之作用酵素,我們推論 SOAT1 與胚胎利用卵黃中脂質之機制有關。為了解 SOAT1 之調控機制,進而增加禽胚對脂質之利用,我們先選殖 SOAT1 之啟動子,預測啟動子上可能存在的轉錄因子結合位,並利用鵪鶉 EECs 及肝臟細胞培養系統進行試驗,加入具有潛力影響 SOAT1 表現之內泌素及營養分,結果顯示,在經高濃度之升糖素、磷酸二酯酶抑制劑 (isobutylmethylxanthine, IBMX) 及低濃度之葡萄糖刺激時,SOAT1 mRNA 表現量皆顯著上升於兩種細胞中。此結果代表 SOAT1 可能受 cAMP-dependent pathway 所調控,因此更進一步使用腺苷酸環化酶促進劑 (forskolin) 和 cAMP 的類似物 (dibutyryl-cAMP) 進行處理,發現兩種細胞中 SOAT1 mRNA 表現量也都顯著上升。我們推測 cAMP 會影響PKA進而調節下游因子,將細胞處理 PKA 之抑制劑-H89 後, SOAT1 mRNA 之表現會因為 PKA 被抑制後表現量下降,H89 亦會抑制由 IBMX 所誘導之 SOAT1 mRNA 表現量,更進一步測試 PKA 活性,可發現在 IBMX 刺激下 PKA 活性顯著增加,並於共處理H89時其活性被抑制。為證實 cAMP-dependent pathway 刺激之下 SOAT1 酯化膽固醇之活性亦增加,我們利用帶有螢光之膽固醇 (NBD-cholesterol) 培養於 EECs 中,追蹤細胞內膽固醇位置及膽固醇累積情形,發現經 dibutyryl-cAMP 所刺激之 EECs 其綠螢光表現較對照組高,顯示經 dibutyryl-cAMP 的刺激可能會促進SOAT1之表現,並增加酯化之膽固醇以油滴的形式儲存於細胞內。最後我們藉由連續截切序列及點突變啟動子之實驗,找出啟動子 -349 bp ~ -341 bp 之 cAMP-responsive element 為調節 SOAT1 表現之重要轉錄因子結合位。
  綜合上述,我們成功找到影響 SOAT1 表現之調節機制,cAMP 經由 PKA 對 SOAT1 基因表現正向調控,進而增加膽固醇酯以油滴的形式儲存於細胞內,此發現對於調控 YSM 利用蛋黃內脂質有了新方向,期望未來可以找到相關調節因子添加於飼糧或直接注射入蛋內之方式,促進禽類胚胎發育對於脂質之利用,最終能有效改善孵化率。


Nutrient utilization is a critical factor for embryonic development. The developing embryo obtains nutrients from albumen and yolk. Yolk sac membrane (YSM) is derived from three germ layers, endoderm, mesoderm and ectoderm. Nutrients are mainly uptaken by endodermal epithelial cells (EECs). Avian embryos grow dramatically before hatching. Approximately 68% of the lipids in yolk are absorbed during this stage. However, a clear mechanism of lipids utilization in yolk remains elusive. In this current study, we examined the mechanism of lipids utilization during embryonic development in an attempt to ameliorate avian hatchability.
  Cholesterol is stored as free cholesterol in the yolk, and can be esterified into cholesteryl esters after transporting into EECs. SOAT1 and SOAT2 are genes encoded the isozymes, sterol O-acyltransferase (SOAT) which is an intracellular enzyme that esterifies long-chain fatty acid and cholesterol to form cholesterol ester. Activity of SOAT1 is higher than SOAT2 in YSM during the final week of embryonic development. We hypothesized that SOAT1 play a role to mediate uptake of free fatty acid and yolk cholesterol in EECs and is responsible for absorption and transportation of yolk lipid into developing embryos. First, we cloned avian SOAT1 promoter from chickens and analyzed its sequence for potential regulatory elements. Then, we established the EECs culture system to elucidate the cellular functions of SOAT1. We evaluated the effects of hormones and nutrients on SOAT1 gene expression in Japanese quail EECs and hepatocytes. Results showed that treatment of glucagon, isobutylmethylxanthine (IBMX) and glucose increased SOAT1 mRNA expression in EEC and hepatocytes, suggesting that SOAT1 is regulated by a cAMP-dependent pathway. Expression of SOAT1 mRNA was increased by adenylate cyclase activator (forskolin) and cAMP analog (dibutyryl-cAMP) treatments in EECs and hepatocytes. Furthermore, we showed protein kinase A (PKA) activity was increased by IBMX treatment, whereas co-treatment of PKA inhibitor, H89, negated the increase in PKA activity. To investigate SOAT1 enzyme activity, we incubated EECs with their substrates. Results suggested that cAMP induced higher activity of cholesterol esterification and thereby more intracellular lipids in EECs. We also found that a cAMP-responsive element (CRE) is located in the SOAT1 promoter region between -349 and -341 bp. By promoter deletion and point-mutation, we demonstrated that CRE played a critical function in mediating the expression of SOAT1.
  In conclusion, expression of SOAT1 is regulated via cAMP-dependent pathway. In the future, we will determine the factors that regulate SOAT1 activity to improve the utilization of lipids in the EECs and increase embryonic growth to promote hatchability of fertilized eggs.


口試委員會審定書 II
誌謝 III
中文摘要 IV
英文摘要 VI
目錄 VIII
圖目錄 XI
表目錄 XIII
壹、 前言 1
貳、 文獻檢討 2
一、禽類胚胎之營養傳遞 2
(1) 卵黃囊膜 2
(2) 膽固醇 5
(3) 膽固醇於 YSM 的酯化 6
二、固醇轉醯酶 8
三、cAMP-dependent pathway 11
參、材料與方法 13
試驗一、選殖 SOAT1 基因調控區域及構築報導基因載體 14
一、SOAT1 調控區域的預測 14
二、選殖預測之 SOAT1 調控區域 14
(1) 雞基因組 DNA 的萃取 14
(2) 預測調控區域之引子設計及聚合酶鏈鎖反應 15
(3) PCR 產物接合與轉形 16
(4) 質體 DNA 的抽取與定序 17
三、構築報導基因載體與調控區活性之檢測 17
(1) 慢病毒載體構築 17
(2) 啟動子活性檢測 19
試驗二、日本鵪鶉胚胎卵黃囊膜內胚層上皮細胞及小鵪鶉肝臟細胞初代培養 20
一、日本鵪鶉胚胎卵黃囊膜內胚層上皮細胞初代培養 20
(1) 受精蛋採集與培養 20
(2) 培養液及緩衝液準備 20
(3) 卵黃囊膜內胚層上皮細胞初代培養 21
(4) 使用膠原蛋白酶促進 EECs 分離 23
(5) 細胞增值測定 24
(6) 油紅染色 24
二、肝臟細胞初代培養 25
(1) 溶液配置 25
(2) 肝臟細胞取得與培養 25
試驗三、啟動子潛在轉錄因子結合位之預測與分析 26
一、轉錄因子結合位的預測 26
二、特定調控區轉錄因子結合位之活化 26
(1) 外源處理活化增加特定轉錄因子與調控區域之結合 26
(2) SOAT1 基因表現 28
2.1 RNA 萃取 28
2.2反轉錄反應 (reverse transcription , RT) 29
2.3 即時定量 PCR (real-time PCR) 29
2.4 統計方式 30
(3) cAMP-dependent pathway 之驗證 30
3.1促進劑與 cAMP 相似物之處理 31
3.2 H89 抑制劑處理 31
3.3 PKA 活性 31
(4) SOAT1 活性 33
試驗四、轉錄因子結合位之驗證 34
一、冷光分析啟動子之調控 34
二、啟動子序列長度連續截切分析 35
(1) 序列長度連續截切冷光載體構築 35
(2) 冷光分析定量調控區域之重要性 36
三、重要調控區域轉錄因子結合位點突變分析 36
四、轉錄因子之表現 36
肆、 試驗結果 37
試驗一、選殖 SOAT1 基因調控區域和構築報導基因載體 37
一、SOAT1 調控區域的預測與選殖 37
二、pLenti-SOAT1p-eGFP 活性之檢測 40
試驗二、日本鵪鶉胚胎卵黃囊膜內胚層上皮細胞初代培養與改良 41
試驗三、啟動子潛在轉錄因子結合位之預測與分析 48
一、轉錄因子結合位的預測 48
二、特定調控區轉錄因子結合位之活化 49
(1) 外源處理活化增加特定轉錄因子後 SOAT1 基因表現 49
(2) cAMP-dependent pathway 之驗證 49
(3) SOAT1 活性 50
試驗四、轉錄因子結合位之驗證 58
一、冷光分析啟動子之調控 58
二、啟動子序列長度連續截切分析 58
三、重要調控區域轉錄因子結合位點突變分析 59
四、轉錄因子之表現 59
伍、討論 64
陸、結論 67
參考文獻 68


郭婷雯。2002。不同去勢方式與不同去勢週齡對台灣土雞肉質特性之影響。碩士論文。國立中興大學。台中。pp. 41-42。
潘玉惠。2013。建立轉基因鵪鶉模式探討固醇轉醯酶在胚胎的功能。碩士論文。國立台灣大學。台北。pp. 21-23。
Romanoff, A. L. 1960. The avian embryo: structural and functional development. New York, Macmillan.
Accad, M., S. J. Smith, D. L. Newland, D. A. Sanan, L. E. King, M. F. Linton, S. Fazio, and R. V. Farese. 2000. Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA : cholesterol acyltransferase 1. J Clin Invest 105: 711-719.
Bacon, W. L., M. A. Musser, and K. I. Brown. 1974. Plasma free fatty acid and neutral lipid concentrations in immature, laying and broody turkey hens. Poult Sci 53: 1154-1160.
Bacskai, B. J., B. Hochner, M. Mahaut-Smith, S. R. Adams, B. K. Kaang, E. R. Kandel, and R. Y. Tsien. 1993. Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons. Science 260: 222-226.
Bang, B. E., C. Ericsen, and J. Aarbakke. 1994. Effects of cAMP and cGMP elevating agents on HL-60 cell differentiation. Pharmacol Toxicol 75, 108-112.
Banner, K. H., and C. P. Page. 1995. Theophylline and selective phosphodiesterase inhibitors as anti-inflammatory drugs in the treatment of bronchial asthma. Eur Respir 8: 996-1000.
Bauer, R., J. A. Plieschnig, T. Finkes, B. Riegler, M. Hermann, and W. J. Schneider. 2013. The developing chicken yolk sac acquires nutrient transport competence by an orchestrated differentiation process of its endodermal epithelial cells. J Biol Chem 288: 1088-1098.
Bellairs, R. 1963. Differentiation of the yolk sac of the chick studied by electron microscopy. J Embryol Exp Morphol 11: 201-225.
Budowski, P., N. R. Bottino, and R. Reiser. 1961. Lipid transport in the laying hen and the incubating egg. Arch Biochem Biophys 93: 483-490.
Buhman, K. K., M. Accad, S. Novak, R. S. Choi, J. S. Wong, R. L. Hamilton, S. Turley, and R. V. Farese. 2000. Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice. Nat Med 6: 1341-1347.
Chang, C. C. N. Sakashita, K. Ornvold, O. Lee, E. T. Chang, R. Dong, S. Lin, C. Y. Lee, S. C. Strom, R. Kashyap, J. J. Fung. R. V. Farese, J. F. Patoiseau, A. Delhon, and T. Y. Chang. 2000. Immunological quantitation and localization of ACAT-1 and ACAT-2 in human liver and small intestine. J Biol Chem 275: 28083-28092.
Chang, T. Y., C. C. Chang, X. Lu, and S. Lin. 2001. Catalysis of ACAT may be completed within the plane of the membrane: a working hypothesis. J Lipid Res 42: 1933-1938.
Chang, T. Y., B. L. Li, C. C. Chang, and Y. Urano. 2009. Acyl-coenzyme A: cholesterol acyltransferases. Am J Physiol Endo M 297: 1-9.
Cheng, D. H., and C. L. Tipton. 1999. Activation of acyl-CoA cholesterol acyltransferase: Redistribution in microsomal fragments of cholesterol and its facilitated movement by methyl-beta-cyclodextrin. Lipids 34: 261-268.
Dachicourt. N., P. Serradas, M. H. Giroix, M. N. Gangnerau, and B. Portha.1996. Decreased glucose-induced cAMP and insulin release in islets of diabetic rats: reversal by IBMX, glucagon, GIP. Am J Physiol 271: 725-732.
Ding, S. T., and M. S. Lilburn. 2000. The developmental expression of acyl-coenzyme A : cholesterol acyltransferase in the yolk sac membrane, liver, and intestine of developing embryos and posthatch turkeys. Poultry Sci 79: 1460-1464.
Dong, Y., A. Marie, G. Jan-Ake, and O. Sam. 1989. The mechanism of cAMP-induced glucocorticoid receptor expression. J Biol Chem 264: 13679-13681.
Dove, D. E., Y. R. Su, W. Zhang, W. G. Jerome, L. L. Swift, M. F. Linton, and S. Fazio. 2005. ACAT1 deficiency disrupts cholesterol efflux and alters cellular morphology in macrophages. Arterioscler Thromb Vasc Biol 25: 128-134.
Eresheim, C., J. Plieschnig, N. E. Ivessa, W. J. Schneider, and M. Hermann. 2014. Expression of microsomal triglyceride transfer protein in lipoprotein-synthesizing tissues of the developing chicken embryo. Biochimie 101: 67-74.
Farese, R. J., S. Cases, S. L. Ruland, H. J. Kayden, J. S. Wong, S. G. Young, and R. L. Hamilton. 1996. A novel function for apolipoprotein B: lipoprotein synthesis in the yolk sac is critical for maternal-fetal lipid transport in mice. J Lipid Res 37: 347-360.
Fazio, S., A. S. Major, L. L. Swift, L. A. Gleaves, M. Accad, M. F. Linton, and R. V. Farese. 2001. Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. J Clin Invest 107: 163-171.
Ge, J., W. Zhai, B. Cheng, P. He, B. Qi, H. Lu, Y. Zeng, and X. Chen. 2013. Insulin induces human acyl-coenzyme A: cholesterol acyltransferase1 gene expression via MAP kinases and CCAAT/enhancer-binding protein alpha. J Cell Biochem 114: 2188-2198.
Glass, C. K., and J. L. Witztum. 2001. Atherosclerosis: The road ahead. Cell 104: 503-516.
Griffin, H., and D. Hermier. 1988. Plasma lipoprotein metabolism and fattening in poultry. in Leanness in Domestic Birds (ed. B. Leclercq and C. C. Whitehead) 175-201. London: Butterworths.
Guo, Z. Y., C. C. Chang, and T. Y. Chang. 2007. Functionality of the seventh and eighth transmembrane domains of acyl-coenzyme A: cholesterol acyltransferase 1. Biochemistry 46: 10063-10071.
Hussein, A., N. A. Wadei, T. Takahashi, and H. M. Schuller. 2005. Theophylline stimulates cAMP-mediated signaling associated with growth regulation in human cells from pulmonary adenocarcinoma and small airway epithelia. Int J Oncol 27: 155-160.
Kanai, M. T. Soji, E. Sugawara, N. Watari, H. Oguchi, M. Matsubara, and D. C. Herbert. 1996. Participation of endodermal epithelial cells on the synthesis of plasma LDL and HDL in the chick yolk sac. Microsc Res Tech 35: 340-348.
Kwak, B. R., G. Pelli, N. R. Veillard, F. Mulhaupt, R. W. James, C. A. Power, and F. Mach. 2002. Increased atherosclerosis in LDL receptor-null mice lacking the CC-chemokine receptor 4. Eur Heart J 23: 675-675.
Lando, M., E. Abemayor, M. A. Verity, and N. Sidell. 1990. Modulation of intracellular cyclic adenosine monophosphate levels and the differentiation response of human neuroblastoma cells. Cancer Res 50: 722-727.
Lee, O., C. C. Chang, W. Lee, and T. Y. Chang. 1998. Immunodepletion experiments suggest that acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT-1) protein plays a major catalytic role in adult human liver, adrenal gland, macrophages, and kidney, but not in intestines. J Lipid Res 39: 1722-1727.
Lee, R., K. L. Kelley, J. K. Sawyer, R. V. Farese, J. S. Parks, and L. L. Rudel. 2004. Plasma cholesteryl esters provided by lecithin:cholesterol acyltransferase and acyl-coenzyme a:cholesterol acyltransferase 2 have opposite atherosclerotic potential. Circ Res 95: 998-1004.
Lu, Z., Z. Yuan, T. Miyoshi, Q. Wang, Z. Su, C. C. Chang, and W. Shi. 2011. Identification of SOAT1 as a quantitative trait locus gene on mouse chromosome 1 contributing to hyperlipidemia. PLoS One 6: 25344.
Mankidy, R., P. W. Ahiahonu, H. Ma, D. Jayasinghe, S. A. Ritchie, M. A. Khan, K. K. Su-Myat, P. L. Wood, and D. B. Goodenowe. 2010. Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study. Lipids Health Dis 9: 62.
Mobbs, I. G., and D. B. McMillan. 1981. Transport across endodermal cells of the chick yolk sac during early stages of development. Am J Anat 160: 285-308.
Mobbs, I. G., and D. B. McMillan. 1979. Structure of the endodermal epithelium of the chick yolk sac during early stages of development. Am J Anat 155: 287-309.
Nakazawa, F., C. Alev, L. M. Jakt, and G. Sheng. 2011. Yolk sac endoderm is the major source of serum proteins and lipids and is involved in the regulation of vascular integrity in early chick development. Develop Dyn 240: 2002-2010.
Noble, R. C. 1987. Lipid metabolism in the chick embryo: Some recent ideas. J Exp Zoo 1: 65-73.
Noble, R. C., and M. Cocchi. 1990. Lipid metabolism and the neonatal chicken. Prog Lipid Res 29: 107-140.
Pal, P., H. Gandhi, R. Giridhar, and M. R. Yadav. 2013. ACAT inhibitors: the search for novel cholesterol lowering agents. Mini Rev Med Chem 13: 1195-1219.
Palis, J., K. E. McGrath, and P. D. Kingsley. 1995. Initiation of hematopoiesis and vasculogenesis in murine yolk sac explants. Blood 86: 156-163.
Powell, K. A., E. A. Deans, and B. K. Speake. 2004. Fatty acid esterification in the yolk sac membrane of the avian embryo. Journal of comparative physiology. B Biochem Syst Environ Physiol 174: 163-168.
Sakashita, N., A. Miyazaki, M. Takeya, S. Horiuchi, C. C. Chang, T. Y. Chang, and K. Takahashi. 2000. Localization of human acyl-coenzyme A: cholesterol acyltransferase-1 (ACAT-1) in macrophages and in various tissues. Am J Pathol 156: 227-236.
Sato, A., K. E. Sheppard, M. J. Fullerton, and J. W. Funder. 1996. cAMP modulates glucocorticoid-induced protein accumulation and glucocorticoid receptor in cardiomyocytes. Am J Physiol 271: 827-833.
Schneider, W. J., A. Osanger, M. Waclawek, and J. Nimpf. 1998. Oocyte growth in the chicken receptors and more. Biol Chem 379: 965-971.
Schwartz, J. H. 2001. The many dimensions of cAMP signaling. Proc Natl Acad Sci U S A 98: 13482-13484.
Shao, X. M., Q. Ge, and J. L. Feldman. 2003. Modulation of AMPA receptors by cAMP-dependent protein kinase in preBotzinger complex inspiratory neurons regulates respiratory rhythm in the rat. J Physiol 547: 543-553.
Shelness, G. S., and J. A. Sellers. 2001. Very-low-density lipoprotein assembly and secretion. Curr Opin Lipidol 12: 151-157.
Shen, X., E. Steyrer, H. Retzek, E. J. Sanders, and W. J. Schneider. 1993. Chicken oocyte growth: receptor-mediated yolk deposition. Cell Tissue Res 272: 459-471.
Sheng, G. 2010. Primitive and definitive erythropoiesis in the yolk sac. A bird’s eye view. Int J Dev Biol 54: 1033-1043.
Sheng, G., and A. C. Foley. 2012. Diversification and conservation of the extraembryonic tissues in mediating nutrient uptake during amniote development. Ann N Y Acad Sci 1271: 97-103.
Shin, M., H. Nagai, and G. Sheng. 2009. Notch mediates Wnt and BMP signals in the early separation of smooth muscle progenitors and blood/endothelial common progenitors. Development 136: 595-603.
Speake, B. K., A. M. Murray, and R. C. Noble. 1998. Transport and transformations of yolk lipids during development of the avian embryo. Prog Lipid Res 37: 1-32.
Yadgary, L., O. Kedar, O. Adepeju, and Z. Uni. 2013. Changes in yolk sac membrane absorptive area and fat digestion during chick embryonic development. Poult Sci 92: 1634-1640.
Yadgary, L., E. A. Wong, and Z. Uni1. 2014. Temporal transcriptome analysis of the chicken embryo yolk sac. BMC Genomics 15: 690.
Yagyu, H., T. Kitamine, J. Osuga, R. Tozawa, Z. Chen, Y. Kaji, T. Oka, S. Perrey, Y. Tamura, K. Ohashi, H. Okazaki, N. Yahagi, F. Shionoiri, Y. Iizuka, K. Harada, H. Shimano, H. Yamashita, T. Gotoda, N. Yamada, and S. Ishibashi. 2000. Absence of ACAT-1 attenuates atherosclerosis but causes dry eye and cutaneous xanthomatosis in mice with congenital hyperlipidemia. J Biol Chem 275: 21324-21330.
Yamamoto, M., T. Urakubo, K. Tominaga-Yoshino, and A.Ogura. 2005. Long-lasting synapse formation in cultured rat hippocampal neurons after repeated PKA activation. Brain Res 1042: 6-16.
Yoshizaki, N., M. Soga, Y. Ito, K. M. Mao, F. Sultana and S. Yonezawa. 2004. Two-step consumption of yolk granules during the development of quail embryos. Dev Growth Differ 46: 229-238.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top