跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/01 17:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭穎鴻
研究生(外文):Ying-Hung Cheng
論文名稱:丁酸鈉對脂肪細胞分化之調控
論文名稱(外文):The function of sodium butyrate in regulating adipogenesis
指導教授:丁詩同丁詩同引用關係
指導教授(外文):Shih-Torng Ding
口試委員:陳珠亮陳洵一許炯偉
口試委員(外文):Chu-Liang ChenShuen-Ei ChenJong-Wei Hsu
口試日期:2015-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:動物科學技術學研究所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:56
中文關鍵詞:丁酸游離脂肪酸二型受體脂肪細胞分化基質血管細胞小鼠
外文關鍵詞:butyratefree fatty acid receptor 2adipogenesisstromal-vascular cellmouseporcine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
游離短鏈脂肪酸為微生物於腸道發酵後的主要產物,包含乙酸、丙酸、丁酸 和戊酸,此類脂肪酸除了提供能量外也會影響腸道上皮細胞黏膜和菌相的生長, 除此之外也具有調控免疫系統、癌細胞生長、胰臟分泌胰島素以及細胞分化的作 用。目前已有許多研究指出丁酸能夠對脂肪細胞的分化有所作用,而其效果卻不 一致,因此本研究的目在釐清丁酸對小鼠、豬等脂肪細胞分化的影響,期能瞭解 其作用途徑和機制。我們發現丁酸會抑制小鼠基質血管細胞 (SVCs) 分化成成熟 的脂肪細胞,減少脂肪堆積於脂肪細胞中,也會抑制脂肪細胞標的基因表現,包 含 Adipoq (adiponectin)、Glut4 (glucose transporter type 4)、Fasn (fatty acid synthase)、 Fabp4 (fatty acid binding protein 4) 和 Srebf1 (sterol regulatory element-binding transcription factor 1) 等,但卻對 3T3-L1 細胞株的分化沒有明顯的影響。相反的, 我們發現丁酸會促進豬基質血管細胞分化脂肪細胞,並且會增進脂肪細胞標的基 因的表現,包含 Adipoq、Fabp4 以及 Cebpa (CCAAT/enhancer binding protein, alpha) 等,而增加細胞累積油滴。我們進一步探討丁酸對脂肪細胞分化的作用途徑,在 小鼠 SVCs 分化過程中額外添加對游離脂肪酸二型受體 (FFAR2) 具有專一性的配 體 (4-chloro-α-(1-methylethyl)-N-2-thiazolylbenzeneacetamide, 4-CMTB) , 發 現 4-CMTB 也會減少小鼠基質血管細胞的分化,qPCR 分析也顯示脂肪細胞標的基因 有下降的情形。綜合上述結果,丁酸對不同物種的脂肪細胞有不一樣的效果,在 小鼠中丁酸可能藉由游離脂肪酸二型受體這個路徑來抑制脂肪細胞的分化過程。

Butyric acid, a short-chain fatty acid (SCFA), is one of the main products from
microbial fermentation in the gastrointestinal tract. Free fatty acid receptor 2 (FFAR2) and FFAR3 were found to be receptors for SCFA. In recent years, SCFAs have been shown to play an important role in the prevention and regulation of the metabolic syndrome, certain types of cancer and bowel disorders. Although, the functions of butyrate on adipogenesis were investigated, the results were not consistent. Therefore, we designed the current study to clarify the effects of butyrate on adipocyte differentiation. In the current study, stromal vascular cells (SVC) from murine and porcine subcutaneous adipose tissue (SAT) were used as the preadipocyte model. Adipocyte differentiation degree was assessed by Oil Red O staining and mRNA expression analysis of adipogenic genes. In addition to SVC of mouse and porcine SAT, we also used 3T3-L1 cell line as an in vitro model. 4-CMTB, an agonist of FFAR2, was used to determine whether the effects of butyrate are mediated through FFAR2. Compared with control, butyrate inhibited the differentiation of mouse adipocytes. The mRNA expression of adipogenesis related genes, Adipoq (adiponectin), Glut4 (glucose transporter type 4), Fasn (fatty acid synthase), Fabp4 (fatty acid binding protein 4), and Srebf1 (sterol regulatory element-binding transcription factor 1), were inhibited in mouse adipocytes. In porcine adipocytes, butyrate enhanced the expression of adipogenic genes. On the other hand, 3T3-L1 cell differentiation was not affected by butyrate. 4-CMTB decreased the formation of adipocytes in mouse SVC and the expression of Adipoq, Fabp4 and Cebpa (CCAAT/enhancer binding protein, alpha).Our research demonstrated that butyrate inhibited mouse adipogenesis but enhanced adipogenesis in porcine SVC. Furthermore, the effect of butyrate on adipogenesis may be through the FFAR2 pathway. Further research is required to demonstrate the function of butyrate and the involvement of FFAR2 in regulating human adipogenesis. Such information can support whether murine or porcine model can be used as a better human model in coping with obesity.

謝辭 .......................................................................................................... I
中文摘要 ................................................................................................... III Abstract.................................................................................................... IV
Contents ...................................................................................................VI
List of figures ............................................................................................VII
List of tables ............................................................................................VIII
1. Introduction .......................................................................................... 1
2. Materials and Methods .......................................................................... 12
2.1. Isolation of mouse stromal-vascular cells ........................................... 12
2.2. Isolation of porcine stromal-vascular cells........................................... 13
2.3. Sodium butyrate and 4-CMTB treatment .............................................14
2.4. Cell culture and differentiation of mouse and porcine adipocytes ....... 14
2.5. 3T3-L1 cell culture ............................................................................ 15
2.6. Oil Red-O staining............................................................................... 15
2.7. RNA extraction and real-time quantitative PCR analysis ..................... 16
2.8. Western blot analysis........................................................................... 17
2.9. Statistical analysis .............................................................................. 18
3. Results .................................................................................................. 20
3.1. Establish the adipocyte differentiation model in mouse and porcine SVCs and 3T3-L1 cell .................................................................................20
3.2. Effects of sodium butyrate on adipocyte differentiation in mouse SVCs21
3.3. Effects of sodium butyrate on transcription factors in mouse SVCs..... 21
3.4. Sodium butyrate has no effect on adipocyte differentiation in mouse 3T3-L1 cell line .......................................................................................... 22
3.5. Effects of sodium butyrate on adipocyte differentiation in porcine SVCs... 23
3.6. The effects of 4-CMTB on adipocyte differentiation in mouse SVCS.... 24
3.7. No obvious effects of NaB and 4-CMTB on AMPK activity................... 25
4.Discussion............................................................................................... 45
Reference .................................................................................................. 50

1. Andoh, A., Y. Fujiyama, K. Hata, Y. Araki, H. Takaya, M. Shimada, and T. Bamba. 1999. Counter-regulatory effect of sodium butyrate on tumour necrosis factor-alpha (TNF-alpha)-induced complement C3 and factor B biosynthesis in human intestinal epithelial cells. Clin. Exp. Immunol. 118:23-9.
2. Aune, U. L., L. Ruiz, and S. Kajimura. 2013. Isolation and differentiation of stromal vascular cells to beige/brite cells. J. Vis. Exp. doi: 10.3791/50191.
3. Bergman, E.N. 1990. Energy contributions of volatile fatty acids from the gastrointestinal tract in various spec. Physiol. Rev. 70:567-90.
4. Bindels, L.B., E. M. Dewulf, and N. M. Delzenne. 2013. GPR43/FFA2: physiopathological relevance and therapeutic prospects. Trends Pharmacol. Sci. 34:226-32.
5. Bjursell, M., T. Admyre, M. Goransson, A. E. Marley, D. M. Smith, J. Oscarsson, and Y. M. Bohlooly. 2011. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 300:E211-20.
6. Blad, C. C., C. Tang, and S. Offermanns. 2012. G protein-coupled receptors for energy metabolites as new therapeutic targets. Nat. Rev. Drug Discov. 11:603-19.
7. Brahe, L. K., A. Astrup, and L. H. Larsen. 2013. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes. Rev. 14:950-9.
8. Brown, A. J., S. M. Goldsworthy, A. A. Barnes, M. M. Eilert, L. Tcheang, D. Daniels, A. I. Muir, M. J. Wigglesworth, I. Kinghorn, N. J. Fraser, N. B. Pike, J. C. Strum, K. M. Steplewski, P. R. Murdock, J. C. Holder, F. H. Marshall, P. G. Szekeres, S. Wilson, D. M. Ignar, S. M. Foord, A. Wise, and S. J. Dowell. 2003. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278:11312-9.
9. Bugaut, M., and M. Bentejac. 1993. Biological effects of short-chain fatty acids in nonruminant mammals. Annu. Rev. Nutr. 13:217-41.
10. Burton, G. R., R. Nagarajan, C. A. Peterson, and R. E. McGehee, Jr. 2004. Microarray analysis of differentiation-specific gene expression during 3T3-L1 adipogenesis. Gene 329:167-85.
11. Catalioto, R. M., C. A. Maggi, and S. Giuliani. 2009. Chemically distinct HDAC inhibitors prevent adipose conversion of subcutaneous human white preadipocytes at an early stage of the differentiation program. Exp. Cell Res. 315:3267-80.
12. Chatterjee, T. K., G. Idelman, V. Blanco, A. L. Blomkalns, M. G. Piegore, Jr., D. S. Weintraub, S. Kumar, S. Rajsheker, D. Manka, S. M. Rudich, Y. Tang, D. Y. Hui, R. Bassel-Duby, E. N. Olson, J. B. Lingrel, S. M. Ho, and N. L. Weintraub. 2011. Histone deacetylase 9 is a negative regulator of adipogenic differentiation. J. Biol. Chem. 286:27836-47.
13. Chen, S., Z. Li, W. Li, Z. Shan, and W. Zhu. 2011. Resveratrol inhibits cell differentiation in 3T3-L1 adipocytes via activation of AMPK. Can. J. Physiol. Pharmacol. 89:793-9.
14. Chen, T. H., W. M. Chen, K. H. Hsu, C. D. Kuo, and S. C. Hung. 2007. Sodium butyrate activates ERK to regulate differentiation of mesenchymal stem cells. Biochem Biophys. Res. Commun. 355:913-8.
15.Dagon, Y., Y. Avraham, and E. M. Berry. 2006. AMPK activation regulates apoptosis, adipogenesis, and lipolysis by eIF2alpha in adipocytes. Biochem. Biophys. Res. Commun. 340:43-7.
16. Darlington, G. J., S. E. Ross, and O. A. MacDougald. 1998. The role of C/EBP genes in adipocyte differentiation. J. Biol. Chem. 273:30057-60.
17. Daval, M., F. Foufelle, and P. Ferre. 2006. Functions of AMP-activated protein kinase in adipose tissue. J. Physiol. 574:55-62.
18. Davie, J. R. 2003. Inhibition of histone deacetylase activity by butyrate. J. Nutr. 133:2485S-2493S
19. den Besten, G., K. van Eunen, A. K. Groen, K. Venema, D. J. Reijngoud, B. M. Bakker. 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54:2325-40.
20. de Ruijter, A. J., A. H. van Gennip, H. N. Caron, S. Kemp, and A. B. van Kuilenburg. 2003. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370:737-49.
21. Frost, G., Z. Cai, M. Raven, D. T. Otway, R. Mushtaq, and J. D. Johnston. 2014. Effect of short chain fatty acids on the expression of free fatty acid receptor 2 (Ffar2), Ffar3 and early-stage adipogenesis. Nutr. Diabetes 4:e128.
22.Fu, Y., N. Luo, R. L. Klein, and W.T. Garvey. 2005. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J. Lipid Res. 46:1369-79.
23. Gao, L., M. A. Cueto, F. Asselbergs, and P. Atadja. 2002. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J. Biol. Chem. 277:25748-55.
24. Gao, Z., J. Yin, J. Zhang, R. E. Ward, R. J. Martin, M. Lefevre, W. T. Cefalu, and J. Ye. 2009. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509-17.
25. Ge, H., X. Li, J. Weiszmann, P. Wang, H. Baribault, J. L. Chen, H. Tian, and Y. Li. 2008. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149:4519-26.
26. Giri, S., R. Rattan, E. Haq, M. Khan, R. Yasmin, J. S. Won, L. Key, A. K. Singh, and I. Singh. 2006. AICAR inhibits adipocyte differentiation in 3T3L1 and restores metabolic alterations in diet-induced obesity mice model. Nutr. Metab. (Lond) 3:31.
27. Haberland, M., M. Carrer, M. H. Mokalled, R. L. Montgomery, and E. N. Olson. 2010. Redundant control of adipogenesis by histone deacetylases 1 and 2. J. Biol. Chem. 285:14663-70.
28. Habinowski, S. A., and L. A. Witters. 2001. The effects of AICAR on adipocyte differentiation of 3T3-L1 cells. Biochem. Biophys. Res. Commun. 286:852-6.
29. Hamer, H. M., D. Jonkers, K. Venema, S. Vanhoutvin, F. J. Troost, and R. J. Brummer. 2008. Review article: the role of butyrate on colonic function. Aliment. Pharmacol. Ther. 27:104-19.
30. Haumaitre, C., O. Lenoir, and R. Scharfmann. 2008. Histone deacetylase inhibitors modify pancreatic cell fate determination and amplify endocrine progenitors. Mol. Cell Biol. 28:6373-83.
31. Henkens, T., P. Papeleu, G. Elaut, M. Vinken, V. Rogiers, and T. Vanhaecke. 2007. Trichostatin A, a critical factor in maintaining the functional differentiation of primary cultured rat hepatocytes. Toxicol. Appl. Pharmacol. 218:64-71.
32. Hong, Y. H., Y. Nishimura, D. Hishikawa, H. Tsuzuki, H. Miyahara, C. Gotoh, K. C. Choi, D. D. Feng, C. Chen, H. G. Lee, K. Katoh, S. D. Roh, and S. Sasaki. 2005. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146:5092-9.
33.Huang, B., H. D. Yuan, D. Y. Kim, H. Y. Quan, and S. H. Chung. 2011. Cinnamaldehyde prevents adipocyte differentiation and adipogenesis via regulation of peroxisome proliferator-activated receptor-gamma (PPARgamma) and AMP-activated protein kinase (AMPK) pathways. J. Agric. Food Chem. 59:3666-73.
34. Jacobs, M. D., and S. C. Harrison. 1998. Structure of an IkappaBalpha/NF-kappaB complex. Cell 95:749-58.
35. Kashihara, K. Hirano, T. Tani, T. Takahashi, S. Miyauchi, G. Shioi, H. Inoue, and G. Tsujimoto. 2013. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 4:1829.
36. Kim, M. H., S. G. Kang, J. H. Park, M. Yanagisawa, and C. H. Kim. 2013. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145:396-406.
37. Kim, S. K., and C. S. Kong. 2010. Anti-adipogenic effect of dioxinodehydroeckol via AMPK activation in 3T3-L1 adipocytes. Chem. Biol. Interact. 186:24-9.
38. Kim, S. N., H. Y . Choi, and Y . K. Kim. 2009. Regulation of adipocyte differentiation by histone deacetylase inhibitors. Arch. Pharm. Res. 32:535-41.
39. Kimura, I., K. Ozawa, D. Inoue, T. Imamura, K. Kimura, T. Maeda, K. Terasawa, D. Kashihara, K. Hirano, T. Tani, T. Takahashi, S. Miyauchi, G. Shioi, H. Inoue, and G. Tsujimoto. 2013. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 4:1829.
40. Lagace, D. C., and M. W. Nachtigal. 2004. Inhibition of histone deacetylase activity by valproic acid blocks adipogenesis. J. Biol. Chem. 279:18851-60.
41. Le Poul, E., C. Loison, S. Struyf, J. Y. Springael, V. Lannoy, M. E. Decobecq, S. Brezillon, V. Dupriez, G. Vassart, J. Van Damme, M. Parmentier, and M. Detheux. 2003. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278:25481-9.
42.Li, G., H. Su, Z. Zhou, and W. Yao. 2014. Identification of the porcine G protein-coupled receptor 41 and 43 genes and their expression pattern in different tissues and development stages. PLoS One 9:e97342.
43. Li, G., W. Yao, and H. Jiang. 2014. Short-chain fatty acids enhance adipocyte differentiation in the stromal vascular fraction of porcine adipose tissue. J. Nutr. 144:1887-95.
44. Li, H., L. Myeroff, D. Smiraglia, M. F. Romero, T. P. Pretlow, L. Kasturi, J. Lutterbaugh, R. M. Rerko, G. Casey, J. P. Issa, J. Willis, J. K. Willson, C. Plass, and S. D. Markowitz. 2003. SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers. Proc. Natl. Acad. Sci. U. S. A. 100:8412-7.
45. Li, H. P., X. Chen, and M. Q. Li. 2013. Butyrate alleviates metabolic impairments and protects pancreatic beta cell function in pregnant mice with obesity. Int. J. Clin. Exp. Pathol. 6:1574-84.
46. Liu, B. H., Y. C. Wang, C. F. Kuo, W. M. Cheng, T. F. Shen, and S. T. Ding. 2005. The effects of docosahexaenoic acid oil and soybean oil on the expression of lipid metabolism related mrna in pigs. J. Anim. Sci. 18:1451-1456.
47. Liu, L. R., S. P. Lin, C. C. Chen, Y. J. Chen, C. C. Tai, S. C. Chang, R. H. Juang, Y. W. Tseng, B. H. Liu, H. J. Mersmann, T. L. Shen, and S. T. Ding. 2011. Serum amyloid A induces lipolysis by downregulating perilipin through ERK1/2 and PKA signaling pathways. Obesity (Silver Spring) 19:2301-9.
48.McKinsey, T. A., C. L. Zhang, and E. N. Olson. 2001. Control of muscle development by dueling HATs and HDACs. Curr. Opin. Genet. Dev. 11:497-504.
49. Milligan, G., L. A. Stoddart, and N. J. Smith. 2009. Agonism and allosterism: the pharmacology of the free fatty acid receptors FFA2 and FFA3. Br. J. Pharmacol. 158:146-53.
50. Ntambi, J. M., and Y. C. Kim. 2000. Adipocyte differentiation and gene expression. J. Nutr. 130:3122S-3126S.
51. Payne, V. A., W. S. Au, C. E. Lowe, S. M. Rahman, J. E. Friedman, S. O''Rahilly, and J. J. Rochford. 2010. C/EBP transcription factors regulate SREBP1c gene expression during adipogenesis. Biochem. J. 425:215-23.
52.Pfaffl, M.W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:e45.
53. Pryde, S. E., S. H. Duncan, G. L. Hold, C. S. Stewart, and H. J. Flint. 2002. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 217:133-9.
54. Rahman, M. M., A. Kukita, T. Kukita, T. Shobuike, T. Nakamura, and O. Kohashi. 2003. Two histone deacetylase inhibitors, trichostatin A and sodium butyrate, suppress differentiation into osteoclasts but not into macrophages. Blood 101:3451-9.
55. Rosen, E. D., and O. A. MacDougald. 2006. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7:885-96.
56. Smith, N. J., R. J. Ward, L. A. Stoddart, B. D. Hudson, E. Kostenis, T. Ulven, J. C. Morris, C. Trankle, I. G. Tikhonova, D. R. Adams, and G. Milligan. 2011. Extracellular loop 2 of the free fatty acid receptor 2 mediates allosterism of a phenylacetamide ago-allosteric modulator. Mol. Pharmacol. 80:163-73.
57. Spiegelman, B. M., E. Hu, J. B. Kim, and R. Brun. 1997. PPARgamma and the control of adipogenesis. Biochimie. 79:111-2.
58. Symonds, M. E. Adipose Tissue Biology. New York: Springer-Verlag, 2012, ch.2.
59. Talukdar, S., J. M. Olefsky, and O. Osborn. 2011. Targeting GPR120 and other fatty acid-sensing GPCRs ameliorates insulin resistance and inflammatory diseases.
Trends. Pharmacol. Sci. 32:543-50.
60. Tang, C., K. Ahmed, A. Gille, S. Lu, H. J. Grone, S. Tunaru, and S. Offermanns.
2015. Loss of FFA2 and FFA3 increases insulin secretion and improves glucose
tolerance in type 2 diabetes. Nat. Med. 21:173-7.
61. Tazoe, H., Y. Otomo, I. Kaji, R. Tanaka, S. I. Karaki, and A. Kuwahara. 2008.
Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions.
J. Physiol. Pharmacol. 59 Suppl 2:251-62.
62. Tou, L., Q. Liu, and R. A. Shivdasani. 2004. Regulation of mammalian epithelial
differentiation and intestine development by class I histone deacetylases. Mol. Cell
Biol. 24:3132-9.
63. Trompette, A., E. S. Gollwitzer, K. Yadava, A. K. Sichelstiel, N. Sprenger, C.
Ngom-Bru, C. Blanchard, T. Junt, L. P. Nicod, N. L. Harris, and B. J. Marsland. 2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20:159-66.
64. Trzaskowski, B., D. Latek, S. Yuan, U. Ghoshdastider, A. Debinski, and S. Filipek. 2012. Action of molecular switches in GPCRs-theoretical and experimental studies. Curr. Med. Chem. 19:1090-109.
65.Ulven, T. 2012. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets. Front. Endocrinol. (Lausanne). 3:111.
66. Unger, R. H., G. O. Clark, P. E. Scherer, and L. Orci. 2010. Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim. Biophys. Acta. 1801:209-14.
67. Vinolo, M. A., H. G. Rodrigues, R. T. Nachbar, and R. Curi. 2011. Regulation of inflammation by short chain fatty acids. Nutrients 3:858-76.
68. Wang, J., X. Wu, N. Simonavicius, H. Tian, and L. Ling. 2006. Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84. J. Biol. Chem. 281:34457-64.
69. Wang, M. Y., P. Grayburn, S. Chen, M. Ravazzola, L. Orci, and R. H. Unger. 2008. Adipogenic capacity and the susceptibility to type 2 diabetes and metabolic syndrome. Proc. Natl. Acad. Sci. U. S. A. 105:6139-44.
70. Xiong, Y., N. Miyamoto, K. Shibata, M. A. Valasek, T. Motoike, R. M. Kedzierski, and M. Yanagisawa. 2004. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc. Natl. Acad. Sci. U. S. A. 101:1045-50.
71. Xu, W. S., R. B. Parmigiani, and P. A. Marks. 2007. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26:5541-52.
72. Yang, J., Y. Kawai, R. W. Hanson, and I. J. Arinze. 2001. Sodium butyrate induces transcription from the G alpha(i2) gene promoter through multiple Sp1 sites in the promoter and by activating the MEK-ERK signal transduction pathway. J. Biol. Chem. 276:25742-52.
73. Yin, L., G. Laevsky, and C. Giardina. 2001. Butyrate suppression of colonocyte NF-kappa B activation and cellular proteasome activity. J. Biol. Chem. 276:44641-6.
74. Yonezawa, T., R. Kurata, K. Yoshida, M. A. Murayama, X. Cui, and A. Hasegawa. 2013. Free fatty acids-sensing G protein-coupled receptors in drug targeting and therapeutics. Curr. Med. Chem. 20:3855-71.
75.Yoo, E. J., J. J. Chung, S. S. Choe, K. H. Kim, and J. B. Kim. 2006. Down-regulation of histone deacetylases stimulates adipocyte differentiation. J. Biol. Chem. 281:6608-15.
76. Zaibi, M. S., C. J. Stocker, J. O''Dowd, A. Davies, M. Bellahcene, M. A. Cawthorne, A. J. Brown, D. M. Smith, and J. R. Arch. 2010. Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett. 584:2381-6.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top